20.03.2020

Autonomous vehicles: AVL optimizes object recognition in AI

The future of driving is autonomous… But until vehicles reach human-level driving capabilities, AI still has to learn a few things. The Graz-based company AVL is tackling some of these challenges together with the Silicon Valley based technology provider Deepen.AI.
/artikel/deepen-ai-avl
AVL trainiert die AI mit Deepen AI
(c) Adobe Stock / Monopoly919
sponsored

Simply leaning back instead of having to pay attention to traffic: That is the vision of autonomous driving. This is intended not only to make traveling more pleasant for the passengers, but also to make it safer than having one person at the steering wheel, when distractions and human errors are the leading cause of fatalities. Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.

+++How software helps to reduce human driving errors+++

This process takes place in several stages. In the first phase, the object detection must determine where an object is located at all. In the second step, a detected object is then classified: It is determined whether it is, for example, a vehicle, an adult, a child or an animal – because a child behaves differently from an adult, for example. Finally, the system must carry out the so-called “tracking”. This involves analyzing where the object was in the past and where it is now – in order to draw conclusions about where the object will probably be next.

Separating the data wheat from the data chaff

Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car. These sensors produce countless amounts of data – and it is precisely this data that must be correctly classified so that the AI can identify which part of it is relevant to safety and which is not.

This is where the Silicon-Valley company Deepen.AI comes into play. Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz. First results of this cooperation were presented at the CES 2020 in Las Vegas.

PoC with AVL for the future of autonomous driving

Deepen.AI, founded by three former Google employees, is about the aforementioned challenge of providing ADSs a correct understanding of the world surrounding them. To achieve this, AI needs some human help in order to be effectively trained to make correct inferences. That’s why, in addition to its 17 full-time employees, Deepen.AI works with around 250 people in India who clean up the data collected by the sensors and teach AI to recognize things: For example, they mark when the AI has overlooked a side mirror on a car or misclassified objects. “These data analysts clear up doubts that the AI has about some objects,” explains Mohammad Musa, Co-Founder and CEO of Deepen.AI: “They help with classification and calibration.”

This very deep focus on data integrity is also the context of the PoC developed jointly with AVL. “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL. Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

 “Safety Pool” as next step after PoC

“Together” is also the keyword behind the joint goal that the partners want to pursue after the successful PoC. One big challenge affecting the industry is that the various car manufacturers are currently pursuing different paths, each one using its own proprietary approach. “But the industry needs standards,” says Musa: “That is the basis for everyone to trust the safety of the systems.”

Therefore, “Safety Pool™, (www.safetypool.ai) a project led by Deepen and the World Economic Forum, has the goal to define quantified benchmarks and uniform descriptions of driving situations, which will then serve not only as standards for the industry, but also as a solid backbone to derive consensus-driven safety assessments and frame regulations. This will bring society one significant step closer to benefitting from the revolutionary capabilities of automated driving technologies.

Video-Talk with AVL and Deepen AI

==> Deepen AI

==> AVL Creators Expedition

Redaktionstipps
Deine ungelesenen Artikel:
19.11.2024

Back to School: Kärntner Startup Movevo ergänzt Turnunterricht an über 100 Volksschulen

Movevo, das Villacher Health-Tech, ist Teil einer Initiative, die Volksschulkinder abseits des Turnunterrichts zu mehr Bewegung animieren soll.
/artikel/back-to-school-kaerntner-startup-movevo-ergaenzt-turnunterricht-an-ueber-100-volksschulen
19.11.2024

Back to School: Kärntner Startup Movevo ergänzt Turnunterricht an über 100 Volksschulen

Movevo, das Villacher Health-Tech, ist Teil einer Initiative, die Volksschulkinder abseits des Turnunterrichts zu mehr Bewegung animieren soll.
/artikel/back-to-school-kaerntner-startup-movevo-ergaenzt-turnunterricht-an-ueber-100-volksschulen
Movevo, movevo4kids, Bewegung in Volksschulen
(c) motion4kids - Die Klasse bewältigt gemeinsam Bewegungschallenges und Aufgaben.

Movevo ist ein Villacher Startup, das eine App entwickelt hat, die Bewegung und Gesundheit spielerisch in den Arbeitsalltag integrieren und zu gemeinsamen Pausen im Team animieren soll – brutkasten berichtete. Die App wird in zwei Versionen angeboten: Move App für Unternehmen (betriebliche Gesundheitsförderung) und movevo4kids für Kinder bzw. Schulen (angepasstes Konzept: Lehrpersonen bekommen die App und machen die digitalen Übungen mit der Klasse). Nun ist man Teil der kostenlosen Initiative “Servus bewegt Kinder – Die Bewegte Schule”. Daran nehmen österreichweit 100 Volksschulen teil – mehr als 16.000 Kinder in über 784 Klassen sollen von dem Bewegungsprogramm profitieren, welches auch die Webapp von movevo4kids umfasst.

Movevo: Gamification-Ansatz im Schulalltag

Ziel ist es, dem zunehmenden Bewegungsmangel bei Kindern entgegenzuwirken und Gesundheit spielerisch im Schulalltag zu fördern. Movevo-Geschäftsführer und Founder Michael Omann dazu: “Turnstunden sind wichtig. Aber wir wollen Bewegung in kurzen Einheiten zu einem fixen Bestandteil des Unterrichts machen.”

Oft fehlen im Unterricht die nötigen Ressourcen, den Schülerinnen und Schülern ausreichend Bewegung zu ermöglichen. Mit der Anwendung von movevo4kids sollen Lehrerinnen und Lehrer einen aktiven Unterricht gestalten. Die Klasse wird dabei durch die von Expertinnen und Experten entwickelten Übungen, spielerisch zum Mitmachen motiviert. Dabei fördere man die Konzentration und Leistung der Kinder und verbessere so die Unterrichtsqualität. Die kurzen (fünf bis zehn Minuten) und flexibel einsetzbaren Bewegungseinheiten sind dazu gedacht, den Turnunterricht im Schulalltag zu ergänzen.

Denn, jedes dritte schulpflichtige Kind ist übergewichtig und nur zwei von zehn Kindern erfüllen die WHO-Empfehlung von einer Stunde Bewegung pro Tag. Das zeigen die alarmierenden Zahlen des aktuellen Gesundheitsberichts vom Gesundheitsministerium. Bewegungsmangel ist eine der Hauptursachen für chronische und psychische Krankheiten und führt in weiterer Folge zu enormen Kosten für das Gesundheitssystem.

“Es muss nicht immer eine volle Stunde Bewegung sein”

“Wir brauchen eine neue Bewegungskultur und mehr Bewegungsbewusstsein in Österreich. Es muss nicht immer eine volle Stunde Bewegung sein, schon kurze aktive Pausen sind wirksam. Die Auswirkungen von zu wenig Bewegung wie Übergewicht sind bereits deutlich sichtbar. Hier darf die Politik nicht länger wegschauen“, so Omann weiter.

Öffentliche und private Volksschulen aus ganz Österreich konnten sich im Oktober über ein Online-Formular für das Projekt anmelden. Das Paket umfasst neben Bewegungsmaterialien und Webinaren zur Bewegungsförderung, Zugänge zu den digitalen Abenteuerwelten von movevo4kids, Break it Kids und Sport-attack. Das Programm wird den Schulen für das Schuljahr 2024/25 zur Verfügung gestellt.

Auszeichnung für Movevo

Abseits der Teilnahme an dieser Initiative belegte die movevo4kids-App diese Woche bei dem “ausgezeichnet regional“-Award in Klagenfurt den zweiten Platz in der Kategorie “Gesundheit & Pflege”. Die zugehörige App für betriebliche Gesundheitsförderung Movevo erreichte den dritten Platz in der Rubrik “Kärnten Digital”.

“Wir freuen uns besonders über die Auszeichnung für movevo4kids und sehen den Award als Bestätigung, dass wir mit unserer Vision auf dem richtigen Weg sind, Kinder auf spielerische Weise zu mehr Bewegung zu motivieren”, sagt Omann.

Die kostenlose Bewegungs-Initiative für 100 Volksschulen in Österreich im Schuljahr 2024/25 wird von der Bildungsstiftung motion4kids in Kooperation mit Red Bull Media House und der Täglichen Bewegungseinheit umgesetzt. Movevo4kids ist Partner des Projekts und stellt dafür die innovativen digitalen Inhalte zur Verfügung.

“Es freut uns sehr, dass Volksschulen aus allen neun Bundesländer vertreten sind”, sagt Marion Kanalz, COO und Co-Founderin von Movevo. “Mit movevo4kids wollen wir allen Kindern positive Bewegungserfahrungen ermöglichen und langfristig zu einem gesunden Lebensstil beitragen.”

Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag

AI Summaries

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Welche gesellschaftspolitischen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Welche wirtschaftlichen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Innovationsmanager:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Investor:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Politiker:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Was könnte das Bigger Picture von den Inhalten dieses Artikels sein?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Wer sind die relevantesten Personen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Wer sind die relevantesten Organisationen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.