Krypto-Crash: Bitcoin unter 40.000 Dollar – 40 Prozent Minus seit April
Der Bitcoin-Kurs ist auf den niedrigsten Stand seit Anfang Februar gefallen. Ethereum und Binance Coin sind von ihren Rekordständen mehr als 30 Prozent eingebrochen.
Wer nach dem jüngsten Kurseinbruch am Kryptomarkt auf eine rasche Erholung gehofft hatte, wurde enttäuscht: Die Kurse der größten Kryptowährungen der Welt gerieten am Mittwoch im Gegenteil noch stärker unter Druck. Der Bitcoin-Kurs fiel weit unter die Marke von 40.000 Dollar bis auf 38.717 Dollar – und sank damit den niedrigsten Stand seit Anfang Februar.
Vom Mitte April erreichten Rekordstand ist er damit um rund 40 Prozent gefallen. Alleine in den vergangenen sieben Tagen hat er nach Zahlen von Coinmarketcap über 30 Prozent eingebüßt. Trotz der scharfen Korrektur ist die Bitcoin-Performance seit Jahresbeginn mit einem Plus von 33 Prozent aber noch immer klar positiv. Am Mittwochvormittag lag der Bitcoin-Kurs zuletzt etwas über dem Tagestief bei 39.200 Dollar – ein Minus von 13 Prozent gegenüber dem Vortag.
Für Altcoins lief es kaum besser: Sieht man von den Stablecoins ab, lagen die meisten der größten Kryptowährungen am Vormittag zwischen 10 und 20 Prozent im Minus. XRP hielt sich mit einem Kursrückgang von 5 Prozent etwas besser als der Gesamtmarkt.
Ethereum von Rekordstand rund 32 Prozent gefallen
Stark unter Druck stand nach der starken Performance der Vorwochen nun auch Ether (ETH). Die Kryptowährung des Ethereum-Systems verlor 16 Prozent auf 2.990 Dollar und fiel damit wieder unter die Marke von 4.000 Dollar. Erst Anfang Mai war ETH das erste Mal über die 3.000-Dollar-Marke gestiegen, nur eine Woche später wurden bereits die 4.000 Dollar geknackt. Von dem vergangenen Mittwoch erreichten Rekordstand von 4.362 Dollar ist der Kurs nun aber wieder deutlich um rund 32 Prozent gefallen.
Binance Coin verlor am Vormittag 18 Prozent auf 435 Dollar und ist mittlerweile 38 Prozent von seinem Höchststand entfernt – das Plus im Jahr 2021 beläuft sich jedoch weiterhin auf über 1.000 Prozent. Dogecoin (DOGE) fiel am Mittwochvormittag um 17 Prozent, Cardano (ADA) um 18 Prozent und Polkadot (DOT) um 11 Prozent. Den stärksten Kursrückgang innerhalb der Top-10-Coins nach Marktkapitalisierung musste der erst seit der Vorwoche handelbare Internet Computer Token (ICP) hinnehmen. Er lag gegenüber dem Vortag 27 Prozent im Minus. Von seinem am ersten Handelstag erreichten Höchststand ist er mittlerweile 80 Prozent gefallen.
DeFi-Token Polygon und Aave vergleichsweise robust
Alle großen Coins sind von ihren Rekordständen mittlerweile im zweistelligen Prozentbereich gefallen. Vergleichsweise nahe an ihren Höchstständen befindet sich jedoch der Solana-Token (SOL) mit einem Minus von 15 Prozent seit dem Rekordstand von 58 Dollar.
Auch der hauptsächlich für Anwendungen im Bereich Decentralized Finance (DeFi) eingesetzte Polygon-Token (MATIC) liegt aktuell relativ geringe 9 Prozent unter seinem Höchststand. Vergleichsweise robust zeigte sich mit Aave (AAVE) außerdem der Token eines weiteren DeFi-Projekts: Er fiel am Mittwochvormittag um 7 Prozent. Von seinem Höchstand aus liegt er damit rund 11 Prozent im Minus.
Kontroverse Diskussionen um Musk-Aussagen
Unmittelbaren Auslöser für den starken Abverkauf am Mittwoch gab es keinen. In der Vorwoche sowie am Wochenende hatten Aussagen von Tesla-CEO Elon Musk jedoch die Marktstimmung getrübt. Dieser hatte zuerst angekündigt, dass der Elektroautohersteller keine Bitcoin-Zahlungen mehr akzeptiere. Diese Option war erst im März in den USA eingeführt worden. In den folgenden Tagen legte Musk dann auf Twitter mit mehreren zugespitzten kritischen Aussagen zu Bitcoin nach und deutete unter anderem an, dass das Unternehmen seine Bitcoin-Bestände verkaufen könnte. In der Krypto-Szene führten Musks Statements zu kontroversen Diskussionen.
Dass die Aussagen des Tesla-Chefs jedoch alleine für die Korrektur verantwortlich sind, darf angezweifelt werden. Viele Beobachter gehen eher davon aus, dass sie als willkommener Anlass zum Abverkauf genutzt wurden, nachdem der Markt – insbesondere bei den Altcoins – schon heiß gelaufen war.
Disclaimer: Dieser Text sowie die Hinweise und Informationen stellen keine Steuerberatung, Anlageberatung oder Empfehlung zum Kauf oder Verkauf von Wertpapieren dar. Sie dienen lediglich der persönlichen Information. Es wird keine Empfehlung für eine bestimmte Anlagestrategie abgegeben. Die Inhalte von brutkasten.com richten sich ausschließlich an natürliche Personen.
Open Source und KI: “Es geht nicht darum, zu den Guten zu gehören”
Nachlese. Die Nutzung von Open-Source-Modellen eröffnet Unternehmen auch im KI-Bereich weitreichende Möglichkeiten. Es gibt dabei aber auch einiges zu bedenken. Darüber und mehr diskutierten in Folge 5 von "No Hype KI" Stephan Kraft von Red Hat, Florian Böttcher von CANCOM Austria, Natalie Ségur-Cabanac von Women in AI und Patrick Ratheiser von Leftshift.One.
Open Source und KI: “Es geht nicht darum, zu den Guten zu gehören”
Nachlese. Die Nutzung von Open-Source-Modellen eröffnet Unternehmen auch im KI-Bereich weitreichende Möglichkeiten. Es gibt dabei aber auch einiges zu bedenken. Darüber und mehr diskutierten in Folge 5 von "No Hype KI" Stephan Kraft von Red Hat, Florian Böttcher von CANCOM Austria, Natalie Ségur-Cabanac von Women in AI und Patrick Ratheiser von Leftshift.One.
Kollaborativ, transparent, frei zugänglich und nicht profit-orientiert – mit Open-Source-Software wird eine Reihe von Eigenschaften assoziiert. Und oftmals stehen bei der Nutzung ethische Überlegungen im Zentrum. Dabei gibt es auch ganz praktische Gründe, die für eine Verwendung durch Unternehmen sprechen – auch bei der Implementierung von KI-Anwendungen, ist Stephan Kraft, Community Advocate & Business Development OpenShift & Application Services bei Red Hat, überzeugt. In Folge fünf der Serie “No Hype KI” diskutierte er dieses und weitere Themen mit Florian Böttcher, Solution Architect bei CANCOM Austria, Natalie Ségur-Cabanac, Policy Lead bei Women in AI und Patrick Ratheiser, Gründer & CEO von Leftshift.One.
“Thema ein Stück weit aus dieser emotionalen, moralisierenden Ecke herausholen”
“Ich will das Thema ein Stück weit aus dieser emotionalen, moralisierenden Ecke herausholen”, sagt Stephan Kraft. Für Red Hat als weltweit führenden Anbieter für Open-Source-Lösungen für Unternehmen gehen die Argumente für eine Nutzung nämlich weit darüber hinaus. “Es geht nicht darum, Open Source als Selbstzweck zu sehen, um zu den Guten zu gehören”, so der Experte. Tatsächlich sei die Verwendung von Open Source gerade bei der Etablierung von KI im Unternehmen für Startups und KMU eine wichtige Weichenstellung.
Offenheit, um Diskriminierung entgegenzuwirken
Auch Natalie Ségur-Cabanac sieht Open Source als “Key Technology” im KI-Bereich. Für “Women in AI” spiele die Offenheit eine zentrale Rolle: “Diese Offenheit braucht es, um Diskriminierung entgegenzuwirken.” Open Source verbessere den Zugang für Frauen zur Technologie, die Abbildung von Frauen in den Daten und es vergrößere die Möglichkeiten in der Forschung. Man müsse aber auch aufpassen, ob Software wirklich so offen sei, wie behauptet, sagt sie bezogen auf die aktuellen Diskussionen rund um OpenAI, das sich – ursprünglich als offenes Projekt gestartet – zum profitorientierten Unternehmen entwickelte. Es brauche auch eine klare Definition, was “open” sei.
Masse an Möglichkeiten
Leftshift.One-Gründer Patrick Ratheiser betont auch die schiere Masse an Möglichkeiten, die Open Source bietet. “2021 hatten wir weltweit Zugriff auf circa 5.000 Open-Source-Modelle. Jetzt sind es bereits mehr als eine Million.” Die Nutzbarkeit sei also klar gegeben, zudem biete die Technologie eine gewisse Unabhängigkeit und werde über ihre Vielfalt zum Innovationstreiber.
Ist Open Source immer die beste Lösung?
Doch bedeutet das, dass Open Source immer die optimale Lösung ist? Ratheiser sieht das differenziert: “Es ist ganz wichtig zu erkennen, was der Kunde braucht und was in dem Fall gerade notwendig ist. Egal, ob es nun On-Premise, in der Cloud, Open Source oder Closed Source ist.” Florian Böttcher von CANCOM Austria pflichtet hier bei: “Wir setzen genau so auf hybrid.”
Datenstruktur im Hintergrund ist entscheidend
Ein Thema, bei dem bei Open Source Vorsicht geboten ist, spricht Natalie Ségur-Cabanac an. Besonders wichtig sei es bei KI-Anwendungen, eine gute Datenstruktur im Hintergrund zu haben. “Die Verantwortung, dass ein Modell mit sauberen Daten trainiert worden ist, liegt bei den Anbietern. Bei Open Source verschwimmt das ein bisschen. Wer ist wofür zuständig? Das ist eine Herausforderung für die Compliance zu schauen, wo man selbst verantwortlich ist und wo man sich auf einen Anbieter verlassen kann.”
Compliance: Großes Thema – mehr Sichereheit mit professioneller Unterstützung
Stephan Kraft hakt hier ein. Genau aus solchen Gründen gebe es Unternehmen wie Red Hat, die mit ihrem Enterprise-Support für Open-Source-Lösungen die Qualitätssicherung auch im rechtlichen Bereich übernehmen. “Das ist ein ganz wichtiger Teil unseres Versprechens gegenüber Kunden”, so Kraft. Unbedacht im Unternehmen mit Open Source zu arbeiten, könne dagegen in “Compliance-Fallen” führen, pflichtet er Ségur-Cabanac bei.
Das sieht auch Patrick Ratheiser als Thema bei Leftshift.One: “Unsere Lösung ist Closed Source, wir setzen aber im Hintergrund Open Source ein. Wichtig ist, dass wir dem Kunden Compliance garantieren können.” Stephan Kraft empfiehlt Unternehmen bei der Open-Source-Nutzung: “Man kann nicht immer gleich die neueste ‘bleeding edge’-Lösung nehmen sondern sollte etwas konservativer herangehen.”
Infrastruktur: Gut planen, was man wirklich braucht
Unabhängig davon, ob man nun Open Source oder Closed Source nutzt, braucht es für die Nutzung von KI die richtige Infrastruktur. “Es kommt natürlich auf den Use Case an, den ein Unternehmen umsetzen will. Da sind die Anforderungen an die Infrastruktur sehr unterschiedlich”, grenzt Florian Böttcher ein. CANCOM Austria unterstützt seine Kunden in genau der Frage. Anwendungen wie das Training von KI-Modellen würde aus gutem Grund kaum in Österreich umgesetzt. “KI ist sehr stromhungrig und entwickelt viel Hitze. Das ist schwierig für ein eigenes Data-Center im Unternehmen, gerade wenn man die Strompreise in Österreich ansieht”, so Böttcher.
“Rechenleistungs-Hunger” von KI könnte sich in Zukunft verringern
Wichtig sei es letztlich, sich als Unternehmen sehr klar darüber zu sein, was man umsetzen wolle. “Danach, welche Software-Lösung man für seinen Use Case einsetzen muss, richtet sich auch die Infrastruktur”, so Böttcher. Er erwarte aber auch, dass die KI-Modelle im nächsten Entwicklungsschritt effizienter werden und der “Rechenleistungs-Hunger” sich verringere.
Patrick Ratheiser ergänzt: “Es ist grundsätzlich eine Kostenfrage.” Unternehmen müssten sich sehr gut überlegen, ob sie ein eigenes LLM (Large Language Model) betreiben und dieses sogar selbst trainieren wollen, oder lieber doch eine Usage-basierte Lösung wählen. Er sehe bei österreichischen Unternehmen – auch bei größeren – eine klare Tendenz zur zweiten Variante. “Es lässt sich deutlich schneller einrichten, ist kalkulierbarer und auch viel schneller skalierbar”, erklärt Ratheiser.
Etwa im Forschungsbereich sei es jedoch wichtig und notwendig, auch eigene LLMs und die damit verbundene Infrastruktur zu betreiben. Doch auch die Möglichkeit von hybriden Lösungen biete sich an. “Man kann mittlerweile auch Teile in der Cloud lassen und Teile On-Premise. Man kann etwa nur ein datenschutzsicheres LLM selbst betreiben”, erklärt der Experte, der auch bei der Wahl der genutzten Modelle einen hybriden Ansatz empfiehlt: “Man braucht nicht für alle Use Cases das neueste Modell. Manchmal braucht man überhaupt kein LLM.”
Datenschutz: Einige Herausforderungen bei LLMs
Stichwort: Datenschutz. Hier schafft die europäische Datenschutzgrundverordnung (DSGVO) im KI-Bereich besondere Herausforderungen, weiß Natalie Ségur-Cabanac, die vorab betont: “Ich persönlich halte die DSGVO für ein gutes Regulierungswerk, weil sie sehr viel Spielraum gibt. Ich sage immer: Datenschutz ist sehr komplex, aber nicht kompliziert.” Konkret seien etwa der Grundsatz der Zweckbezogenheit, also dass man Daten nur für konkrete Zwecke einsetzen darf, und dass man sie minimierend einsetzen muss, relevant für den KI-Bereich. “Da haben wir schon einen Konflikt, weil man ja [bei LLMs] erst einmal schaut, was man aus möglichst vielen Daten machen kann”, so die Expertin.
Ist KI rechtlich innerhalb der EU sogar per se in einem Graubereich?
Auch Transparenzbestimmungen – sowohl in der DSGVO als auch im AI-Act der EU – seien zu beachten. “Wenn ich KI verwende, muss ich auch wissen, was drinnen ist”, fasst Ségur-Cabanac zusammen. Ist KI also rechtlich innerhalb der EU sogar per se in einem Graubereich? “Nein, das glaube ich nicht. Aber man muss seine Hausaufgaben schon gut machen”, sagt die Expertin. Wichtig sei daher auch die im Rahmen des EU-AI-Acts eingeforderte KI-Kompetenz in Unternehmen – im technischen und rechtlichen Bereich.
KI-Kompetenz als zentrales Thema
Patrick Ratheiser stimmt zu: “Neben der Technologie selber sind bei unseren Kunden die Mitarbeiter ein Riesen-Thema. Man muss sie nicht nur wegen dem AI-Act fit bekommen, sondern es geht darum, sie wirklich auf die Anwendungen einzuschulen.” Wichtig seien dabei auch die Kolleg:innen, die sich bereits mit dem Thema auskennen – die “Pioniere” im Unternehmen. “AI Literacy ist sicherlich das Thema 2025 und in nächster Zeit. So, wie wir gelernt haben, mit dem Smartphone umzugehen, werden wir es auch mit generativer KI lernen”, so Ratheiser.
“Einfach einmal ausprobieren”
Stephan Kraft ergänzt: Neben einer soliden Datenbasis und der notwendigen Kompetenz brauche es bei KI – gerade auch im Bereich Open Source – noch etwas: “Einfach einmal ausprobieren. Es braucht auch Trial and Error. Das ist vielleicht oft das Schwierigste für CFOs und Geschäftsführer.” Dieses Ausprobieren sollte aber innerhalb eines festgelegten Rahmens passieren, damit die KI-Implementierung gelingt, meint Natalie Ségur-Cabanac: “Unternehmen brauchen eine KI-Strategie und müssen wissen, was sie mit der Technologie erreichen wollen.” Auch sich mit den zuvor angesprochenen rechtlichen Anforderungen – Stichwort Compliance – zu beschäftigen, komme zeitlich erst nach der Festlegung der Strategie.
Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.