20.03.2020

Autonomous vehicles: AVL optimizes object recognition in AI

The future of driving is autonomous… But until vehicles reach human-level driving capabilities, AI still has to learn a few things. The Graz-based company AVL is tackling some of these challenges together with the Silicon Valley based technology provider Deepen.AI.
/artikel/deepen-ai-avl
AVL trainiert die AI mit Deepen AI
(c) Adobe Stock / Monopoly919
sponsored

Simply leaning back instead of having to pay attention to traffic: That is the vision of autonomous driving. This is intended not only to make traveling more pleasant for the passengers, but also to make it safer than having one person at the steering wheel, when distractions and human errors are the leading cause of fatalities. Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.

+++How software helps to reduce human driving errors+++

This process takes place in several stages. In the first phase, the object detection must determine where an object is located at all. In the second step, a detected object is then classified: It is determined whether it is, for example, a vehicle, an adult, a child or an animal – because a child behaves differently from an adult, for example. Finally, the system must carry out the so-called “tracking”. This involves analyzing where the object was in the past and where it is now – in order to draw conclusions about where the object will probably be next.

Separating the data wheat from the data chaff

Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car. These sensors produce countless amounts of data – and it is precisely this data that must be correctly classified so that the AI can identify which part of it is relevant to safety and which is not.

This is where the Silicon-Valley company Deepen.AI comes into play. Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz. First results of this cooperation were presented at the CES 2020 in Las Vegas.

PoC with AVL for the future of autonomous driving

Deepen.AI, founded by three former Google employees, is about the aforementioned challenge of providing ADSs a correct understanding of the world surrounding them. To achieve this, AI needs some human help in order to be effectively trained to make correct inferences. That’s why, in addition to its 17 full-time employees, Deepen.AI works with around 250 people in India who clean up the data collected by the sensors and teach AI to recognize things: For example, they mark when the AI has overlooked a side mirror on a car or misclassified objects. “These data analysts clear up doubts that the AI has about some objects,” explains Mohammad Musa, Co-Founder and CEO of Deepen.AI: “They help with classification and calibration.”

This very deep focus on data integrity is also the context of the PoC developed jointly with AVL. “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL. Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

 “Safety Pool” as next step after PoC

“Together” is also the keyword behind the joint goal that the partners want to pursue after the successful PoC. One big challenge affecting the industry is that the various car manufacturers are currently pursuing different paths, each one using its own proprietary approach. “But the industry needs standards,” says Musa: “That is the basis for everyone to trust the safety of the systems.”

Therefore, “Safety Pool™, (www.safetypool.ai) a project led by Deepen and the World Economic Forum, has the goal to define quantified benchmarks and uniform descriptions of driving situations, which will then serve not only as standards for the industry, but also as a solid backbone to derive consensus-driven safety assessments and frame regulations. This will bring society one significant step closer to benefitting from the revolutionary capabilities of automated driving technologies.

Video-Talk with AVL and Deepen AI

==> Deepen AI

==> AVL Creators Expedition

Redaktionstipps
Deine ungelesenen Artikel:
15.11.2024

10 Jahre brutkasten: Eine Jubiläumsfeier voller Überraschungen, Emotionen und Gemeinschaft

Am vergangenen Donnerstagabend wurde ein besonderer Meilenstein gefeiert: brutkasten, Österreichs führendes Medium für die Gestalter:innen der Zukunft, empfing über 500 Gäste im MAK Wien, um sein 10-jähriges Jubiläum zu zelebrieren.
/artikel/brutkasten-birthday-bash-2024
15.11.2024

10 Jahre brutkasten: Eine Jubiläumsfeier voller Überraschungen, Emotionen und Gemeinschaft

Am vergangenen Donnerstagabend wurde ein besonderer Meilenstein gefeiert: brutkasten, Österreichs führendes Medium für die Gestalter:innen der Zukunft, empfing über 500 Gäste im MAK Wien, um sein 10-jähriges Jubiläum zu zelebrieren.
/artikel/brutkasten-birthday-bash-2024
(c) brutkasten/Marko Kovic

Es war ein Abend voller Energie und Inspiration, bei dem die führenden Köpfe der Innovations-Szene gemeinsam mit brutkasten rund um Gründer und CEO Dejan Jovicevic auf eine Dekade voller Höhen und Tiefen anstießen. Signature-Cocktails, eine mitreißende Live-Band und eine meterlange Food-Tafel luden zum Networken ein.

Rückblick auf 10 Jahre brutkasten

Moderiert wurde der Abend von einem weiteren Dejan – dem Gründer der Fuckup Nights, Dejan Stojanovic. Im offiziellen Teil ließ brutkasten-Gründer Jovicevic die vergangenen zehn Jahre mit einer sehr persönlichen Keynote Revue passieren: Angefangen bei der Gründung im Jahr 2014 als Teil der Tageszeitung “Die Presse”, über den Management-Buyout im Jahr 2017 und die Übernahmen von StartingUp sowie Venture Capital Magazin bis hin zur strategischen Mehrheitsübernahme durch die VGN im Jahr 2023. Ein Jahr nach der damit verbundenen Umstrukturierung blickt Jovicevic positiv in die Zukunft: „Als Team sind wir stärker denn je und voller Tatendrang, die Welt zu erobern“.

Im Rahmen der Feierlichkeiten wurde auch die neue brutkasten-Initiative “Austrian Innovators” vorgestellt. Deren Ziel ist, Österreichs Gestalter:innen der Zukunft zu vernetzen, um die Wirtschaft zukunftsfit zu machen. Die Initiative richtet sich dabei nicht nur an Startup-Founder:innen, sondern auch an Gründer:innen aus der traditionellen Wirtschaft, an Innovator:innen in etablierten Unternehmen und an Investor:innen, die die Transformation der Wirtschaft finanzieren werden. Interessierte können sich auf dieser Website vormerken lassen.

Founders4brutkasten als Unterstützung und Wertschätzung

Als Hauptsponsoren Tribe.Land und We\R unterstützen den Abend. Tribe.Land – The Co-Creation Collective – gegründet von Braintribe-Founder Stefan Ebner steht für einen innovativen Ansatz im Company Building und trat bei dem Jubiläumsevent erstmalig an die Öffentlichkeit. Das erste Co-Creation-Venture ist die gemeinsam mit Börsianer-Gründer Michael Berl ins Leben gerufene Co-Investment-Plattform We\R, die bei dem Event ihren Product Launch feierte.

Der Abend hielt aber auch unerwartete Überraschungen für den brutkasten-Gründer Dejan Jovicevic bereit. Neben einer pinken Geburtstagstorte von seinem Team sorgte auch Moderator Dejan Stojanovic mit der Ankündigung der Founders4brutkasten-Aktion für eine Überraschung. Diese wurde von österreichischen Gründer:innen ins Leben gerufen, um brutkasten zu unterstützen.

Über diese Website können Unterstützer:innen ein “I love brutkasten”-T-Shirt kaufen und damit brutkasten unterstützen. “Brutkasten hat uns 10 Jahre lang zusammengebracht, auf die Bühne geholt, informiert und inspiriert. Wir wollen, dass etwas von diesem unbezahlbaren Wert an den brutkasten zurückfließt”, heißt es in der Ankündigung der Aktion.

Fotos vom Event: brutkasten/Marko Kovic

(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic
(c) brutkasten/Marko Kovic

Wir bedanken uns bei den Sponsoren unseres Events:

Die Sponsoren des brutkasten Birthday Bash
Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag

AI Summaries

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Welche gesellschaftspolitischen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Welche wirtschaftlichen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Innovationsmanager:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Investor:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Politiker:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Was könnte das Bigger Picture von den Inhalten dieses Artikels sein?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Wer sind die relevantesten Personen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Wer sind die relevantesten Organisationen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.