17.02.2023

ChatGPT: Diese Fragen müssen sich Unternehmen vor dem Einsatz stellen

Gastbeitrag. Lohnt es sich für Unternehmen, den auf künstlicher Intelligenz basierenden Chatbot ChatGPT einzusetzen? Dazu muss man erst ein paar grundlegende Fragen klären, argumentiert Ana Simic in diesem brutkasten-Beitrag.
/artikel/chatgpt-fuer-unternehmen
Ana Simic
Foto: Studio F - Yvonne Fetz / Ascannio - stock.adobe.com (Hintergrund)

Die aktuelle Debatte rund um ChatGPT dreht sich häufig um die Schule oder die Erstellung von Texten mit dieser mächtigen Lösung, die auf künstlicher Intelligenz (KI) basiert. Aber schon bald wird sich uns allen die Frage stellen: Soll ich als Unternehmen auch in ChatGPT oder ähnliche Lösungen investieren? Und wenn ja wieviel? Dabei gilt es sowohl unternehmerische Aspekte zu berücksichtigen, technische Fragen zu beantworten und sich auch ein paar Grundsatzfragen zum Einsatz von AI im unternehmerischen Umfeld stellen.

Business Aspekte

Was ist mein Use Case mit ChatGPT?

Wenn ich beispielsweise Journalistin bin und am Tag drei statt einem Artikel recherchieren und schreiben kann, weil mich die Maschine dabei unterstützt, und es für diese zusätzlichen Artikel tatsächlich einen Markt gibt, dann bin ich effizienter und effektiver.

Wenn ich im Kundenkontakt stehe und mich besser auf meine Termine vorbereiten kann, wird mein Kunde zufriedener. In jedem Fall muss der Anwendungsfall einen klaren und ausformulierten Wert haben. Und diese sollte in Summe die Kosten der Nutzung übersteigen.

Kann ich den Use Case wirklich besser mit dem Tool nutzen?

Was auf den ersten Blick beeindruckend aussieht, ist auf den Zweiten vielleicht weniger interessant. Wir schon wissen, die Maschine ist sehr gut im Vortäuschen ihrer Exzellenz. Daher sollte man eigene Use Cases gut abtesten.

Markt und Differenzierung

Gibt es Aspekte, mit denen ich mich vom Mitbewerb abheben kann und werden es auch meine Kunden schätzen? Innovation kann einen Mehrwert bieten.

Mitarbeiter:innen und Innovationsgeist

Werden meine Mitarbeiter:innen mehr Spaß an ihrer Arbeit haben und deshalb produktiver und kreativer sein und müssen weniger Routinetätigkeiten machen? Werde ich dadurch zu einem attraktiveren Arbeitgeber?

Technische Aspekte

• Wie sehen meine aktuelle Datenstruktur und Infrastruktur aus? Kann ich es gut integrieren?
• Anforderungen an Datenplattformen und Hardware werden mit der erhöhten Nutzung auch steigen, und damit weitere Kosten an sich ziehen.

Qualität, Ethik, Risken und einiges mehr

• Vertrauen ist gut, aber Kontrolle ist im Fall von künstlicher Intelligenz besser. Die sogenannte Data Governance wird immens wichtig, um sicher zu gehen, dass sich jemand in der Organisation um die Daten und ihre Qualität kümmert, und sicherstellt, dass alle ethischen Aspekte beim Input und Output berücksichtigt sind.
• Wie sind also meine Abläufe organisiert, damit es wirklich funktioniert und einen Mehrwert liefert?
• Mit der Qualität geht auch die Frage nach der Erklärbarkeit des Ergebnisses einher. Mittlerweile gibt es gute Tools für Explainable AI (XAI), die jedem Modell angehängt werden können, um sie für Menschen erklärbar zu machen. Was waren die wichtigsten Treiber, also was hat den größten Einfluss auf das Ergebnis?
• Es ist noch nicht klar, wie die rechtliche Frage des geistigen Eigentums der Trainingsdaten geklärt wird und wie sich das auf die Kosten auswirken wird. Sicher ist man nur wenn man die Herkunft der Daten erklären und nachweisen kann, dass man sie verarbeiten darf.

Was passiert in den nächsten Jahren?

“Geht es denn jetzt mit dem Fortschritt immer so weiter, und müssen wir wirklich nicht mehr selbst denken”? Das ist eher eine Frage unserer Erwartungshaltung an die Weiterentwicklung als eine technische Frage. Seit der Einführung des iPhones haben wir gelernt, dass es jedes Jahr neue Features gibt – und die Erwartung an die neue KI liegt nun bei vielen Menschen ähnlich hoch.

Wenn man sich allerdings ansieht, wie sich Machine-Learnung- und Natural-Languague-Processing-Modelle in den vergangenen zehn Jahren entwickelt haben, sieht man, dass die Fortschritte eher wellenartig waren: Lange Zeit scheinen sie zu stagnieren, dann auf einmal gibt es einen Sprung nach vorne, um wieder eine Zeitlang zu stagnieren.

Das hängt mit den verfügbaren Daten zusammen, mit denen die Modelle trainiert werden können. Wenn die Daten für das Training in großer Menge verfügbar und gut klassifiziert sind, kann ein neues mächtiges Modell trainiert werden – und wir erleben es als einen Riesensprung und Fortschritt. Wenn die Daten jedoch schwer zu bekommen sind, dann dauert es sehr lange, bis wir den Fortschritt erleben.

Man kann also nicht die Sprünge, die bei anderen Datenmodellen erzielt worden sind, einfach auf andere Daten und Anwendungsfelder übertragen, weil es immer zuerst um die Daten geht, mit denen man das Modell trainieren muss. Dann erst kommen die Erfolge.

ChatGPT wiederrum wird besser werden, weil er schon gut, wenn auch nicht komplett, trainiert ist. Jedoch stellt sich auch hier die Frage: Was passiert, wenn ChatGPT alle Bücher und alle Texte der Welt gelesen hat? Woher kommen dann weitere Trainingsdaten? Und wie nutzen wir es dann, wenn alle Nutzer auf das gleiche Modell und die gleichen Daten zurückgreifen? Hat man dann immer noch die gleichen Vorteile?

Damit wären wir wieder bei den ersten Grundsatzfragen der Use Cases, technischer Aspekte und ethischer Bewertung. Wenn diese Fragen eindeutig und positiv beantwortet werden können, dann wird die (zukünftige) Standardisierung der AI kein Nachteil für ein einzelnes Unternehmen sein. Letztendes verwenden wir auf der ganzen Welt viele anderen technischen Standards, die in der Geschichte der Menschheit zu vielen Vorteilen für einzelne Unternehmen geführt haben.


Zur Autorin

Ana Simic ist Österreich-Geschäftsführerin der finnisch-deutschen Data & AI Beratung DAIN Studios. Die erfahrene Digitalisierungs- und Daten-Expertin setzt auf wertorientierte KI-Strategien und Machine-Learning-Lösungen für alle Branchen, und hilft Führungskräften und Experten, die KI zu verstehen und anzuwenden.

Deine ungelesenen Artikel:
14.11.2024

“Analyser”: Konsortium entwickelt Tool, das bei CSRD und EU-Taxonomie helfen soll

In einem von der FFG geförderten Projekt unter der Leitung von Fraunhofer Austria wird ein Tool entwickelt, das Unternehmen beim Erfüllen der CSRD-Anforderungen unterstützen soll.
/artikel/analyser-konsortium-entwickelt-tool-das-bei-csrd-und-eu-taxonomie-helfen-soll
14.11.2024

“Analyser”: Konsortium entwickelt Tool, das bei CSRD und EU-Taxonomie helfen soll

In einem von der FFG geförderten Projekt unter der Leitung von Fraunhofer Austria wird ein Tool entwickelt, das Unternehmen beim Erfüllen der CSRD-Anforderungen unterstützen soll.
/artikel/analyser-konsortium-entwickelt-tool-das-bei-csrd-und-eu-taxonomie-helfen-soll
Analyser, CSRD, EU-Taxonomie
(c) - PwC Österreich -Das Konsortium des Projekts "Analyser" beim Kick-Off.

Die Regeln der Corporate Sustainability Reporting Directive (CSRD), die in den kommenden Jahren sukzessive schlagend werden, bedeuten für zahlreiche österreichische Unternehmen eine Verpflichtung zur Nachhaltigkeitsberichterstattung. Bei vielen von diesen – auch jene, die freiwillig schon früher als erforderlich mit der Umsetzung starten – werden Schwierigkeiten erwartet, die Anforderungen zu erfüllen, da insbesondere KMU nicht über ausreichend Kapazitäten für interne Nachhaltigkeitsabteilungen verfügen würden.

CSRD und Taxonomie

Dies gilt im Besonderen für die EU-Taxonomie, die ergänzend zur CSRD anzuwenden ist. Gemäß ihr müssen die wirtschaftlichen Aktivitäten eines Unternehmens als nachhaltig oder nicht-nachhaltig deklariert werden.

Die Verordnung umfasst umfangreiche und detaillierte Kriterien, die für Ungeübte nicht leicht zu verstehen sind. Deshalb will in einem kürzlich gestarteten Forschungsprojekt namens “AI Enabled Sustainability Jurisdiction Demonstrator” (Analyser) ein Forschungskonsortium KI-basierte Module entwickeln. Die sollen es auch ungeschulten Anwenderinnen und Anwendern ermöglichen, die gesetzlichen Meldepflichten zu erfüllen. So soll eine Erleichterung für Unternehmen erzielt werden.

“Das oberste Ziel unseres Projekts ist es, die Zahl der KMU zu erhöhen, die selbstständig in der Lage sind, die EU-Taxonomie in guter Qualität zu berichten”, erklärt Maximilian Nowak, der das Projekt bei Fraunhofer Austria leitet.

Das Konsortium

Das Konsortium, bestehend aus Fraunhofer Austria, Universität Innsbruck, Technischer Universität (TU) Wien, Leiwand AI, PwC Wirtschaftsprüfgesellschaft, der Wirtschaftsagentur Niederösterreich ecoplus, Murexin und Lithoz wird dafür Teile des Prozesses mithilfe von Künstlicher Intelligenz automatisieren. Ein Chatbot, der auf einem eigens kreierten Sprachmodell beruht, soll mit den Anwenderinnen und Anwendern im Dialog stehen und sicherstellen, dass alle benötigten Dokumente vorliegen.

Es sind nämlich viele Fragen im Rahmen der Nachhaltigkeitsberichterstattung zu klären: Welche wirtschaftlichen Aktivitäten gibt es im Unternehmen? Wie umfangreich sind diese? Welche davon sind taxonomiefähig, können also überhaupt nach den Kriterien bewertet werden?

Josef Baumüller, der von Seiten der TU Wien an dem Projekt beteiligt ist, sagt: “Es ist vielen noch nicht bewusst, wie komplex die Anforderungen zunächst an die Datenerhebung und anschließend an die Klassifizierung sind. Die Prozesslandschaft im Unternehmen muss erfasst und auf die Vorgaben der EU-Taxonomie übergeleitet werden, darüber hinaus gilt es, relevante Datenbedarfe zu identifizieren und im Sinne der Effizienz v.a. bereits vorhandene Datenbestände zu nützen.”

CSRD-Berichterstattung eine Herausforderung

Dass eine Unterstützung der Unternehmen unumgänglich ist, sagt auch Stefan Merl von der PwC Österreich GmbH Wirtschaftsprüfungsgesellschaft: “Wir spüren bereits jetzt eine massive Zunahme in den Anfragen von Unternehmen, insbesondere von KMU, die sehen, dass die Erfüllung der CSRD-Berichterstattungspflichten eine große Herausforderung ist. Es führt kein Weg daran vorbei, eine automatisierte Lösung zu entwickeln, die weit über den Automatisierungsgrad bestehender Tools hinausgeht. Genau das wollen wir im Projekt ‘Analyser’ verwirklichen.”

Dabei ist essenziell, dass die im Tool eingesetzte KI fair, nachvollziehbar und korrekt arbeitet. Dafür soll Leiwand AI GmbH die nötige Expertise in das Projekt einbringen.

“In einer so kritischen Angelegenheit wie der Nachhaltigkeitsberichterstattung ist es besonders wichtig, dass auch Maßnahmen hinsichtlich einer zuverlässigen und fairen KI-Lösung getroffen werden. Durch den Einsatz verschiedener Methoden rund um nachhaltige und vertrauenswürdige KI werden wir dazu beitragen, dass der ‘Analyser’ gesicherte Informationen liefert, fair in Bezug auf Bias und Diskriminierung ist und im Einklang mit dem EU AI Act steht”, sagt Mira Reisinger, Data Scientist bei Leiwand AI.

Das Projekt ist im Herbst 2024 gestartet, läuft über drei Jahre und wird durch die FFG aus Mitteln des Bundesministeriums für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie gefördert.

Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag

AI Summaries

ChatGPT: Diese Fragen müssen sich Unternehmen vor dem Einsatz stellen

AI Kontextualisierung

Welche gesellschaftspolitischen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

ChatGPT: Diese Fragen müssen sich Unternehmen vor dem Einsatz stellen

AI Kontextualisierung

Welche wirtschaftlichen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

ChatGPT: Diese Fragen müssen sich Unternehmen vor dem Einsatz stellen

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Innovationsmanager:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

ChatGPT: Diese Fragen müssen sich Unternehmen vor dem Einsatz stellen

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Investor:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

ChatGPT: Diese Fragen müssen sich Unternehmen vor dem Einsatz stellen

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Politiker:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

ChatGPT: Diese Fragen müssen sich Unternehmen vor dem Einsatz stellen

AI Kontextualisierung

Was könnte das Bigger Picture von den Inhalten dieses Artikels sein?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

ChatGPT: Diese Fragen müssen sich Unternehmen vor dem Einsatz stellen

AI Kontextualisierung

Wer sind die relevantesten Personen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

ChatGPT: Diese Fragen müssen sich Unternehmen vor dem Einsatz stellen

AI Kontextualisierung

Wer sind die relevantesten Organisationen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

ChatGPT: Diese Fragen müssen sich Unternehmen vor dem Einsatz stellen