09.06.2020

Was würde Charles Darwin von der Singularity halten?

Wie spielen das menschliche Gehirn und Künstliche Intelligenz zusammen? Und was würde Charles Darwin dazu sagen, dass wir Maschinen erschaffen, die intelligenter sind als wir selbst? Ein Rück- und Ausblick.
/artikel/charles-darwin-singularity-ki-gehirn
(c) Adobe Stock / jirsak / beigestellt

Der Leitsatz „Survival of the fittest“ von Charles Darwin ist allgegenwärtig. Er prägte nicht bloß unsere Sicht auf die Biologie, auch ökonomisch und gesellschaftlich interpretieren wir ihn ständig neu, passen ihn dem Zeitgeist an. Derweil hat ihn der Begründer der Evolutionstheorie auch selbst unterschiedlich interpretiert. Meinte er in der ersten Phase seiner Forschung damit noch das „erfolgreiche Fortpflanzen“ innerhalb einer Spezies, so deutete er ihn später auch als die „erfolgreichere Anpassung an eine sich verändernde Umwelt“. Vom Konzept der „natürlichen Auslese“ nahm Darwin über die Jahre Abstand, es wurde zu oft falsch interpretiert.

+++Philipp Maderthaner: „Ein Entschlossener ist immer die Mehrheit“+++

Darwin schuf essentielle, naturwissenschaftliche Grundlagen. Seine Theorien wurden aber auch ideologisch vereinnahmt und missbraucht. Denken wir an den Sozialdarwinismus. Der Versuch, den Darwinismus auf unsere Gesellschaften umzulegen, zählt nicht zu den Stilblüten unserer Geschichte. Sie mahnen uns, sorgfältig mit der Interpretation solcher Grundlagen umzugehen. Verzichten können wir allerdings nicht darauf, beschreiben sie doch für uns gültige Gesetzmäßigkeiten, auf die man neue Thesen stützt.

Über den freien Willen und richtige Entscheidungen

Betrachten wir zunächst „die Entscheidung“, als wichtigstes Element der Überlebensstrategie eines jeden Individuums. Die Art, wie täglich tausendfach entschieden wird, sowie die Konsequenzen daraus. Sie gestalten unser Leben und unsere Arbeit. Sie bestimmen über Erfolg- und Misserfolg. Bei Tieren gehen Forscher mehr oder weniger davon aus, dass Entscheidungen über Verhaltensmuster vererbt, bzw. durch Nachahmung erlernt und bestätigt werden.

Sie sprechen vom Entscheidungs-Determinismus. Das bedeutet, dass Entscheidungen im Prinzip vorherbestimmt sind. Lebewesen würde diese nur mehr abrufen, situationsbezogen und kombinatorisch. Spannend wird es, wenn wir uns Entscheidungsprozesse beim modernen Menschen ansehen. Die Sicht auf unsere Ratio und den aufgeklärten Homo Sapiens Sapiens ist stark geprägt vom sogenannten „freien Willen“. Dieser baue auf eigenen, unabhängigen Analysen sowie eigenen Entscheidungen auf, die der selbstbestimmte Mensch treffe.

Vom unfreien freien Willen

Wie vom Blitz getroffen mussten deshalb Humanisten und Ethiker reagieren, als wir von führenden Neurobiologen lernten, dass es mit dem freien Willen nicht so weit her sei wie gedacht. Bei einfachen Organismen sind Wille und Entscheidungsmuster so simpel, dass wir sie vorhersagen können, wenn wir uns alleine ihr Nervensystem ansehen. Von ihnen bis hin zu komplexeren Lebewesen und dem Menschen finden sich immer dieselben Nervenzellen und Gesetzmäßigkeiten, auf deren Basis sie funktionieren.  Nur Komplexität und Quantität der Nervenzellen unterscheiden sich.

Das ist eine entscheidende Erkenntnis. Selbst komplexeste Verhaltensweisen im Menschen beruhen also auf dieser Wirkweise. Für die Neurowissenschaften bedeutet dies, und die Erkenntnis gilt bei der Mehrheit der Wissenschaftler global als gesichert, dass auch beim Menschen der Wille, die Entscheidungen sowie alle kognitiven Prozesse vorherbestimmt sind. Sie sind vor allem abhängig vom Zustand des jeweiligen Nervensystems. Diese festgelegte Vorgehensweise des Gehirns und seiner Nervenzellen waren biologisch betrachtet essentiell für die erfolgreiche Entwicklung des Menschen.

Doch wenn alle Entscheidungen vorherbestimmt sind, weshalb kann man diese nicht richtig vorhersagen? Weil Determinismus nicht bedeutet, dass die Signale in den Neuronen immer gleich linear auf Reize reagieren. Geringste Unterschiede in der Ausgangsbasis gestalten den ultra-komplexen Verlauf schon anders. Dafür reicht etwa eine winzige Abweichung in den Signalen der Neuronen. Diese kann zu etwas Neuem führen, etwas das nicht vorhersehbar ist. Wir nennen diese Abweichung – Kreativität.

Menschliche und künstliche Entscheidungen

Der Mensch versucht seit jeher, seine Erfindungen zu verbessern und er tut dies nicht selten, indem er Anleihen aus der Natur nimmt, die geradezu ideal designt scheint. So sind Entwickler Künstlicher Intelligenz (KI) dazu übergegangen, das menschliche Gehirn nachzubauen. Beim Aufbau sogenannter neuronaler Netze platzieren sie, ähnlich wie beim menschlichen Gehirn, viele Neuronen und verbinden diese miteinander.

Ein neuronales Netz sieht dabei weniger chaotisch wie ein menschliches Gehirn aus, sondern es besteht aus über einander liegenden Schichten (Layers), auf denen die Neuronen fein säuberlich an einander gereiht werden. Ein Neuron ist dabei ein Informationszustand, es reagiert auf einen Reiz von außen. Sehr ähnlich wie in der Natur, kann man bei sehr einfachen neuronalen Netzen möglicherweise vorhersehen, zu welchem Ergebnis die Künstliche Intelligenz kommen werde. Bei komplexeren Systemen, zum Beispiel solchen mit Millionen von Neuronen, wird es unmöglich, transparent zu machen, weshalb nun ein bestimmtes Ergebnis heraus kam. Manche bezeichnen sie deshalb als „blackbox“. Kritiker wie Regulatoren fordern daher eine „explainable ai“ („eine erklärbare KI“, Anm.), was Wissenschaftler vor schwierige Probleme stellt. Denn wie erfasst man Millionen verschiedener Zustände von Neuronen und deren Wirkungsweisen transparent und für Menschen erklärbar?

+++Rassismus in den USA und die etablierte Kapitalismus-Kritik: Kill the system?+++

Das Ergebnis einer Berechnung in einem neuronalen Netz ist übrigens eine Entscheidung. Genauer gesagt, es ist eine Entscheidung mit einer bestimmten Wahrscheinlichkeit versehen, wie richtig diese sei. Und wie wir von der Biologie und den Neurowissenschaften lernten, auch ein künstliches, neuronales Netz lernt (autonom) bei komplexen Aufgaben von menschlichen Entscheidungen.

Nehmen wir zum Beispiel eine KI, die lernt, Katzen von Hunden zu unterscheiden. Es reicht nicht, der KI einfach tausende Bilder der Tiere zu „füttern“. Vielmehr muss vorab ein Mensch bei jedem Bild entscheiden, was er sieht: Ist es ein Hund oder eine Katze? Man nennt diesen Vorgang „labeling“. Und weil das bei großen Datensätzen mitunter eine recht aufwendige Sache ist, lagern sie viele Firmen nach Indien aus, wo mittlerweile hunderttausende Menschen damit beschäftigt sind, für KI-Systeme zu „labeln“ oder zu „annotieren“, wie man den Vorgang bei sprachlichen Korpora nennt. Die Muster, die menschlichen Entscheidungen, eingepflegt als Daten, sie bilden also die Basis für die Künstliche Intelligenz.

Die Stärke der schwachen Künstlichen Intelligenz

Anders als beim Menschen, fokussiert diese zunächst auf Nischen oder begrenzte Aufgaben, wir nennen sie „schwache KI“. Dort aber wird die KI oft deutlich „intelligenter“ als der Mensch, weil sie in klar abgegrenzten Domänen einfach viel mehr Daten simultan trainieren kann. Eine selbstfahrende KI in Autos beispielsweise profitiert von Millionen gefahrener menschlicher Test-Kilometer. Eine Diagnose-KI von Krebszellen hat Millionen richtig diagnostizierter MRTs gesehen und entscheidet darauf basierend. Und eine KI-Gesichtserkennung erkennt nicht Hunderte oder Tausende Menschen wieder, sondern Milliarden, wenn sie nur genügend Daten zum Trainieren hatte.

Qualität und Quantität helfen

Wenn ich Ihre Aufmerksamkeit jetzt noch genieße, dann haben Sie vielleicht schon an zwei Schlussfolgerungen meiner Erzählung gedacht. Qualität und Quantität der Daten sind entscheidend. Hat ein Tier-Rassist in unserem erfundenen Beispiel alle Chiwawas aus Bosheit als „Katzen“ gelabelt, dann erkennt die KI womöglich den Großteil aller Hunde und Katzen korrekt, aber Chiwawas und ähnlich aussehende Hunde sind und bleiben für sie Katzen. Wir sprechen von „Bias-KI“. Das ist Künstliche Intelligenz mit „Vorurteilen“.

+++Künstliche Intelligenz als Chance für die Industrie: ein Leitfaden+++

Wenngleich das verwirrt, denn die KI ist an sich nicht vorurteilsanfällig. Aber hat man sie mit menschlichen „Vorurteils-Daten“ trainiert, was soll sonst dabei herauskommen als „simulierte Vorurteile“? Und wollen wir, dass unsere KI nicht bloß Hunde und Katzen sondern auch Perser-Katzen, Doggen und Dackel richtig erkennt, dann braucht sie umso mehr, richtig „gelabelte“ Daten. Ihre Entscheidungen werden richtiger, wenn die menschlichen Entscheidungen davor korrekt waren. Erfolgreiche Entscheidungen sind determiniert, egal ob sie tierisch, human oder künstlich sind und dasselbe gilt für falsche und schlechte Entscheidungen.

Was würde Charles Darwin zu Künstlicher Intelligenz sagen?

Inzwischen machen wir große Fortschritte in KIs in klar abgegrenzten Domänen, lernen dort besser, auch im Sinne des Menschen, zu entscheiden: Beim Autofahren, Krebs diagnostizieren, Fonds-Management und Fehlerfinden in Fertigungsprozessen. Parallel beginnen wir, diese KIs zu kombinieren und schaffen entscheidungsfähigere Software, die parallel in verschiedenen Bereichen bessere Leistungen erbringt als wir Menschen selbst. Und wenn diese gesteigerte Intelligenz uns gesünder, sicherer und glücklicher macht, dann soll es so sein. Einige besonders gut dotierte Institute streben aber besonders hoch hinaus. Sie versuchen die „general ai“ zu erschaffen, um irgendwann in der „Singularity“ zu münden. Das ist jener „Urknall“, in dem die künstliche die menschliche Intelligenz millionenfach übersteigen wird und der nur mehr wenige Jahrzehnte von uns weg sein könnte.

Vielleicht würde Charles Darwin als Forscher der „Singularity“ gelassen gegenüberstehen, es als natürlichen Verlauf der Evolution betrachten; als einen Prozess der Auslese, dem Siegen schneller und richtiger Entscheidungen über langsame und falsche. Vielleicht würde Darwin uns Menschen bedauern, weil wir als ehemalige „Krönung der Schöpfung“ (Darwin war ursprünglich Theologe., Anm.) etwas erschaffen haben, das uns derart überlegen ist und droht, uns evolutionär zu ersetzen. Aber vielleicht würde Darwin uns auch beglückwünschen. Weil wir Menschen eine höhere Intelligenz entwickeln konnten als die eigene, um all unsere großen Probleme zu lösen. Hoffen wir abschließend, er würde uns beglückwünschen und wünschen wir uns noch viel Kreativität.


Über den Autor

Mic Hirschbrich ist CEO des KI-Unternehmens Apollo.AI, beriet führende Politiker in digitalen Fragen und leitete den digitalen Think-Tank von Sebastian Kurz. Seine beruflichen Aufenthalte in Südostasien, Indien und den USA haben ihn nachhaltig geprägt und dazu gebracht, die eigene Sichtweise stets erweitern zu wollen. Im Jahr 2018 veröffentlichte Hirschbrich das Buch „Schöne Neue Welt 4.0 – Chancen und Risiken der Vierten Industriellen Revolution“, in dem er sich unter anderem mit den gesellschaftspolitischen Implikationen durch künstliche Intelligenz auseinandersetzt.

Redaktionstipps
Deine ungelesenen Artikel:
14.11.2024

“Analyser”: Konsortium entwickelt Tool, das bei CSRD und EU-Taxonomie helfen soll

In einem von der FFG geförderten Projekt unter der Leitung von Fraunhofer Austria wird ein Tool entwickelt, das Unternehmen beim Erfüllen der CSRD-Anforderungen unterstützen soll.
/artikel/analyser-konsortium-entwickelt-tool-das-bei-csrd-und-eu-taxonomie-helfen-soll
14.11.2024

“Analyser”: Konsortium entwickelt Tool, das bei CSRD und EU-Taxonomie helfen soll

In einem von der FFG geförderten Projekt unter der Leitung von Fraunhofer Austria wird ein Tool entwickelt, das Unternehmen beim Erfüllen der CSRD-Anforderungen unterstützen soll.
/artikel/analyser-konsortium-entwickelt-tool-das-bei-csrd-und-eu-taxonomie-helfen-soll
Analyser, CSRD, EU-Taxonomie
(c) - PwC Österreich -Das Konsortium des Projekts "Analyser" beim Kick-Off.

Die Regeln der Corporate Sustainability Reporting Directive (CSRD), die in den kommenden Jahren sukzessive schlagend werden, bedeuten für zahlreiche österreichische Unternehmen eine Verpflichtung zur Nachhaltigkeitsberichterstattung. Bei vielen von diesen – auch jene, die freiwillig schon früher als erforderlich mit der Umsetzung starten – werden Schwierigkeiten erwartet, die Anforderungen zu erfüllen, da insbesondere KMU nicht über ausreichend Kapazitäten für interne Nachhaltigkeitsabteilungen verfügen würden.

CSRD und Taxonomie

Dies gilt im Besonderen für die EU-Taxonomie, die ergänzend zur CSRD anzuwenden ist. Gemäß ihr müssen die wirtschaftlichen Aktivitäten eines Unternehmens als nachhaltig oder nicht-nachhaltig deklariert werden.

Die Verordnung umfasst umfangreiche und detaillierte Kriterien, die für Ungeübte nicht leicht zu verstehen sind. Deshalb will in einem kürzlich gestarteten Forschungsprojekt namens “AI Enabled Sustainability Jurisdiction Demonstrator” (Analyser) ein Forschungskonsortium KI-basierte Module entwickeln. Die sollen es auch ungeschulten Anwenderinnen und Anwendern ermöglichen, die gesetzlichen Meldepflichten zu erfüllen. So soll eine Erleichterung für Unternehmen erzielt werden.

“Das oberste Ziel unseres Projekts ist es, die Zahl der KMU zu erhöhen, die selbstständig in der Lage sind, die EU-Taxonomie in guter Qualität zu berichten”, erklärt Maximilian Nowak, der das Projekt bei Fraunhofer Austria leitet.

Das Konsortium

Das Konsortium, bestehend aus Fraunhofer Austria, Universität Innsbruck, Technischer Universität (TU) Wien, Leiwand AI, PwC Wirtschaftsprüfgesellschaft, der Wirtschaftsagentur Niederösterreich ecoplus, Murexin und Lithoz wird dafür Teile des Prozesses mithilfe von Künstlicher Intelligenz automatisieren. Ein Chatbot, der auf einem eigens kreierten Sprachmodell beruht, soll mit den Anwenderinnen und Anwendern im Dialog stehen und sicherstellen, dass alle benötigten Dokumente vorliegen.

Es sind nämlich viele Fragen im Rahmen der Nachhaltigkeitsberichterstattung zu klären: Welche wirtschaftlichen Aktivitäten gibt es im Unternehmen? Wie umfangreich sind diese? Welche davon sind taxonomiefähig, können also überhaupt nach den Kriterien bewertet werden?

Josef Baumüller, der von Seiten der TU Wien an dem Projekt beteiligt ist, sagt: “Es ist vielen noch nicht bewusst, wie komplex die Anforderungen zunächst an die Datenerhebung und anschließend an die Klassifizierung sind. Die Prozesslandschaft im Unternehmen muss erfasst und auf die Vorgaben der EU-Taxonomie übergeleitet werden, darüber hinaus gilt es, relevante Datenbedarfe zu identifizieren und im Sinne der Effizienz v.a. bereits vorhandene Datenbestände zu nützen.”

CSRD-Berichterstattung eine Herausforderung

Dass eine Unterstützung der Unternehmen unumgänglich ist, sagt auch Stefan Merl von der PwC Österreich GmbH Wirtschaftsprüfungsgesellschaft: “Wir spüren bereits jetzt eine massive Zunahme in den Anfragen von Unternehmen, insbesondere von KMU, die sehen, dass die Erfüllung der CSRD-Berichterstattungspflichten eine große Herausforderung ist. Es führt kein Weg daran vorbei, eine automatisierte Lösung zu entwickeln, die weit über den Automatisierungsgrad bestehender Tools hinausgeht. Genau das wollen wir im Projekt ‘Analyser’ verwirklichen.”

Dabei ist essenziell, dass die im Tool eingesetzte KI fair, nachvollziehbar und korrekt arbeitet. Dafür soll Leiwand AI GmbH die nötige Expertise in das Projekt einbringen.

“In einer so kritischen Angelegenheit wie der Nachhaltigkeitsberichterstattung ist es besonders wichtig, dass auch Maßnahmen hinsichtlich einer zuverlässigen und fairen KI-Lösung getroffen werden. Durch den Einsatz verschiedener Methoden rund um nachhaltige und vertrauenswürdige KI werden wir dazu beitragen, dass der ‘Analyser’ gesicherte Informationen liefert, fair in Bezug auf Bias und Diskriminierung ist und im Einklang mit dem EU AI Act steht”, sagt Mira Reisinger, Data Scientist bei Leiwand AI.

Das Projekt ist im Herbst 2024 gestartet, läuft über drei Jahre und wird durch die FFG aus Mitteln des Bundesministeriums für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie gefördert.

Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag

AI Summaries

Was würde Charles Darwin von der Singularity halten?

  • Wie wir von der Biologie und den Neurowissenschaften lernten, auch ein künstliches, neuronales Netz lernt bei komplexen Aufgaben von menschlichen Entscheidungen.
  • Die Muster, die menschlichen Entscheidungen, eingepflegt als Daten, sie bilden also die Basis für die Künstliche Intelligenz.
  • Ihre Entscheidungen werden richtiger, wenn die menschlichen Entscheidungen davor korrekt waren.
  • Erfolgreiche Entscheidungen sind determiniert, egal ob sie tierisch, human oder künstlich sind und dasselbe gilt für falsche und schlechte Entscheidungen.
  • Vielleicht würde Charles Darwin als Forscher der “Singularity” gelassen gegenüberstehen, es als natürlichen Verlauf der Evolution betrachten; als einen Prozess der Auslese, dem Siegen schneller und richtiger Entscheidungen über langsame und falsche.

AI Kontextualisierung

Welche gesellschaftspolitischen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Was würde Charles Darwin von der Singularity halten?

  • Wie wir von der Biologie und den Neurowissenschaften lernten, auch ein künstliches, neuronales Netz lernt bei komplexen Aufgaben von menschlichen Entscheidungen.
  • Die Muster, die menschlichen Entscheidungen, eingepflegt als Daten, sie bilden also die Basis für die Künstliche Intelligenz.
  • Ihre Entscheidungen werden richtiger, wenn die menschlichen Entscheidungen davor korrekt waren.
  • Erfolgreiche Entscheidungen sind determiniert, egal ob sie tierisch, human oder künstlich sind und dasselbe gilt für falsche und schlechte Entscheidungen.
  • Vielleicht würde Charles Darwin als Forscher der “Singularity” gelassen gegenüberstehen, es als natürlichen Verlauf der Evolution betrachten; als einen Prozess der Auslese, dem Siegen schneller und richtiger Entscheidungen über langsame und falsche.

AI Kontextualisierung

Welche wirtschaftlichen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Was würde Charles Darwin von der Singularity halten?

  • Wie wir von der Biologie und den Neurowissenschaften lernten, auch ein künstliches, neuronales Netz lernt bei komplexen Aufgaben von menschlichen Entscheidungen.
  • Die Muster, die menschlichen Entscheidungen, eingepflegt als Daten, sie bilden also die Basis für die Künstliche Intelligenz.
  • Ihre Entscheidungen werden richtiger, wenn die menschlichen Entscheidungen davor korrekt waren.
  • Erfolgreiche Entscheidungen sind determiniert, egal ob sie tierisch, human oder künstlich sind und dasselbe gilt für falsche und schlechte Entscheidungen.
  • Vielleicht würde Charles Darwin als Forscher der “Singularity” gelassen gegenüberstehen, es als natürlichen Verlauf der Evolution betrachten; als einen Prozess der Auslese, dem Siegen schneller und richtiger Entscheidungen über langsame und falsche.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Innovationsmanager:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Was würde Charles Darwin von der Singularity halten?

  • Wie wir von der Biologie und den Neurowissenschaften lernten, auch ein künstliches, neuronales Netz lernt bei komplexen Aufgaben von menschlichen Entscheidungen.
  • Die Muster, die menschlichen Entscheidungen, eingepflegt als Daten, sie bilden also die Basis für die Künstliche Intelligenz.
  • Ihre Entscheidungen werden richtiger, wenn die menschlichen Entscheidungen davor korrekt waren.
  • Erfolgreiche Entscheidungen sind determiniert, egal ob sie tierisch, human oder künstlich sind und dasselbe gilt für falsche und schlechte Entscheidungen.
  • Vielleicht würde Charles Darwin als Forscher der “Singularity” gelassen gegenüberstehen, es als natürlichen Verlauf der Evolution betrachten; als einen Prozess der Auslese, dem Siegen schneller und richtiger Entscheidungen über langsame und falsche.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Investor:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Was würde Charles Darwin von der Singularity halten?

  • Wie wir von der Biologie und den Neurowissenschaften lernten, auch ein künstliches, neuronales Netz lernt bei komplexen Aufgaben von menschlichen Entscheidungen.
  • Die Muster, die menschlichen Entscheidungen, eingepflegt als Daten, sie bilden also die Basis für die Künstliche Intelligenz.
  • Ihre Entscheidungen werden richtiger, wenn die menschlichen Entscheidungen davor korrekt waren.
  • Erfolgreiche Entscheidungen sind determiniert, egal ob sie tierisch, human oder künstlich sind und dasselbe gilt für falsche und schlechte Entscheidungen.
  • Vielleicht würde Charles Darwin als Forscher der “Singularity” gelassen gegenüberstehen, es als natürlichen Verlauf der Evolution betrachten; als einen Prozess der Auslese, dem Siegen schneller und richtiger Entscheidungen über langsame und falsche.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Politiker:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Was würde Charles Darwin von der Singularity halten?

  • Wie wir von der Biologie und den Neurowissenschaften lernten, auch ein künstliches, neuronales Netz lernt bei komplexen Aufgaben von menschlichen Entscheidungen.
  • Die Muster, die menschlichen Entscheidungen, eingepflegt als Daten, sie bilden also die Basis für die Künstliche Intelligenz.
  • Ihre Entscheidungen werden richtiger, wenn die menschlichen Entscheidungen davor korrekt waren.
  • Erfolgreiche Entscheidungen sind determiniert, egal ob sie tierisch, human oder künstlich sind und dasselbe gilt für falsche und schlechte Entscheidungen.
  • Vielleicht würde Charles Darwin als Forscher der “Singularity” gelassen gegenüberstehen, es als natürlichen Verlauf der Evolution betrachten; als einen Prozess der Auslese, dem Siegen schneller und richtiger Entscheidungen über langsame und falsche.

AI Kontextualisierung

Was könnte das Bigger Picture von den Inhalten dieses Artikels sein?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Was würde Charles Darwin von der Singularity halten?

  • Wie wir von der Biologie und den Neurowissenschaften lernten, auch ein künstliches, neuronales Netz lernt bei komplexen Aufgaben von menschlichen Entscheidungen.
  • Die Muster, die menschlichen Entscheidungen, eingepflegt als Daten, sie bilden also die Basis für die Künstliche Intelligenz.
  • Ihre Entscheidungen werden richtiger, wenn die menschlichen Entscheidungen davor korrekt waren.
  • Erfolgreiche Entscheidungen sind determiniert, egal ob sie tierisch, human oder künstlich sind und dasselbe gilt für falsche und schlechte Entscheidungen.
  • Vielleicht würde Charles Darwin als Forscher der “Singularity” gelassen gegenüberstehen, es als natürlichen Verlauf der Evolution betrachten; als einen Prozess der Auslese, dem Siegen schneller und richtiger Entscheidungen über langsame und falsche.

AI Kontextualisierung

Wer sind die relevantesten Personen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Was würde Charles Darwin von der Singularity halten?

  • Wie wir von der Biologie und den Neurowissenschaften lernten, auch ein künstliches, neuronales Netz lernt bei komplexen Aufgaben von menschlichen Entscheidungen.
  • Die Muster, die menschlichen Entscheidungen, eingepflegt als Daten, sie bilden also die Basis für die Künstliche Intelligenz.
  • Ihre Entscheidungen werden richtiger, wenn die menschlichen Entscheidungen davor korrekt waren.
  • Erfolgreiche Entscheidungen sind determiniert, egal ob sie tierisch, human oder künstlich sind und dasselbe gilt für falsche und schlechte Entscheidungen.
  • Vielleicht würde Charles Darwin als Forscher der “Singularity” gelassen gegenüberstehen, es als natürlichen Verlauf der Evolution betrachten; als einen Prozess der Auslese, dem Siegen schneller und richtiger Entscheidungen über langsame und falsche.

AI Kontextualisierung

Wer sind die relevantesten Organisationen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Was würde Charles Darwin von der Singularity halten?

  • Wie wir von der Biologie und den Neurowissenschaften lernten, auch ein künstliches, neuronales Netz lernt bei komplexen Aufgaben von menschlichen Entscheidungen.
  • Die Muster, die menschlichen Entscheidungen, eingepflegt als Daten, sie bilden also die Basis für die Künstliche Intelligenz.
  • Ihre Entscheidungen werden richtiger, wenn die menschlichen Entscheidungen davor korrekt waren.
  • Erfolgreiche Entscheidungen sind determiniert, egal ob sie tierisch, human oder künstlich sind und dasselbe gilt für falsche und schlechte Entscheidungen.
  • Vielleicht würde Charles Darwin als Forscher der “Singularity” gelassen gegenüberstehen, es als natürlichen Verlauf der Evolution betrachten; als einen Prozess der Auslese, dem Siegen schneller und richtiger Entscheidungen über langsame und falsche.