20.03.2020

Autonomous vehicles: AVL optimizes object recognition in AI

The future of driving is autonomous… But until vehicles reach human-level driving capabilities, AI still has to learn a few things. The Graz-based company AVL is tackling some of these challenges together with the Silicon Valley based technology provider Deepen.AI.
/artikel/deepen-ai-avl
AVL trainiert die AI mit Deepen AI
(c) Adobe Stock / Monopoly919
sponsored

Simply leaning back instead of having to pay attention to traffic: That is the vision of autonomous driving. This is intended not only to make traveling more pleasant for the passengers, but also to make it safer than having one person at the steering wheel, when distractions and human errors are the leading cause of fatalities. Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.

+++How software helps to reduce human driving errors+++

This process takes place in several stages. In the first phase, the object detection must determine where an object is located at all. In the second step, a detected object is then classified: It is determined whether it is, for example, a vehicle, an adult, a child or an animal – because a child behaves differently from an adult, for example. Finally, the system must carry out the so-called “tracking”. This involves analyzing where the object was in the past and where it is now – in order to draw conclusions about where the object will probably be next.

Separating the data wheat from the data chaff

Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car. These sensors produce countless amounts of data – and it is precisely this data that must be correctly classified so that the AI can identify which part of it is relevant to safety and which is not.

This is where the Silicon-Valley company Deepen.AI comes into play. Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz. First results of this cooperation were presented at the CES 2020 in Las Vegas.

PoC with AVL for the future of autonomous driving

Deepen.AI, founded by three former Google employees, is about the aforementioned challenge of providing ADSs a correct understanding of the world surrounding them. To achieve this, AI needs some human help in order to be effectively trained to make correct inferences. That’s why, in addition to its 17 full-time employees, Deepen.AI works with around 250 people in India who clean up the data collected by the sensors and teach AI to recognize things: For example, they mark when the AI has overlooked a side mirror on a car or misclassified objects. “These data analysts clear up doubts that the AI has about some objects,” explains Mohammad Musa, Co-Founder and CEO of Deepen.AI: “They help with classification and calibration.”

This very deep focus on data integrity is also the context of the PoC developed jointly with AVL. “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL. Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

 “Safety Pool” as next step after PoC

“Together” is also the keyword behind the joint goal that the partners want to pursue after the successful PoC. One big challenge affecting the industry is that the various car manufacturers are currently pursuing different paths, each one using its own proprietary approach. “But the industry needs standards,” says Musa: “That is the basis for everyone to trust the safety of the systems.”

Therefore, “Safety Pool™, (www.safetypool.ai) a project led by Deepen and the World Economic Forum, has the goal to define quantified benchmarks and uniform descriptions of driving situations, which will then serve not only as standards for the industry, but also as a solid backbone to derive consensus-driven safety assessments and frame regulations. This will bring society one significant step closer to benefitting from the revolutionary capabilities of automated driving technologies.

Video-Talk with AVL and Deepen AI

==> Deepen AI

==> AVL Creators Expedition

Redaktionstipps
Deine ungelesenen Artikel:
07.01.2025

ElephantSkin: Salzburger Scaleup schließt Revenue-Deal mit McWin Capital Partners

Das Salzburger GreenTech-Scaleup ElephantSkin verkündet eine strategische Partnerschaft mit McWin Capital Partners – einem britischen Private-Equity- und Risikokapitalunternehmen, das sich auf die Lebensmittelindustrie spezialisiert hat.
/artikel/elephantskin-mcwin-capital-partners
07.01.2025

ElephantSkin: Salzburger Scaleup schließt Revenue-Deal mit McWin Capital Partners

Das Salzburger GreenTech-Scaleup ElephantSkin verkündet eine strategische Partnerschaft mit McWin Capital Partners – einem britischen Private-Equity- und Risikokapitalunternehmen, das sich auf die Lebensmittelindustrie spezialisiert hat.
/artikel/elephantskin-mcwin-capital-partners
Die Gründer von ElephantSkin mit McWin
v. l. n. r. Mario Greis (CPO ElephantSkin), Henry McGovern (Founding Partner McWin) und Raphael Reifeltshammer (CEO ElephantSkin) (c) ElephantSkin

Mit seinen patentierten “WETnDRY-Handschuhen”, die über 30 Waschgänge standhalten sollen, reduziert das Salzburger GreenTech-Scaleup ElephantSkin laut eigener Angabe den CO2-Fußabdruck von Restaurants um durchschnittlich 97 Prozent, den Plastikmüll um 99 Prozent und die Kosten für Unternehmen um mindestens 25 Prozent.

Seit der Gründung 2020 gewann ElephantSkin renommierte Partner für sich, wie die Supermarktkette Lidl, die Pizzakette Domino’s und zuletzt im November 2024, die Hospitality-Gruppe Abu Dhabi National Hotels (brutkasten berichtete).

Im Jänner dieses Jahres schloss ElephantSkin eine strategische Partnerschaft mit McWin Capital Partners (McWin). Mit seinem McWin Food Tech Fund I spezialisiert sich das britische Private-Equity- und Risikokapitalunternehmen auf die Lebensmittelindustrie.

Langfristig weg von Plastik

Im Rahmen der Partnerschaft möchte McWin die aktuell in den täglichen Arbeitsprozessen verwendeten Einweg-Plastikhandschuhe bei Restaurants reduzieren und die Einführung der Mehrwegprodukte von ElephantSkin vorantreiben.

In einer strategischen Partnerschaft wird McWin für Umsatz nach dem Sweat-Equity-Prinzip sorgen. McWin wird dabei als “strong industry partner” gesehen. Der McWin Food Tech Fund I erhält laut Vereinbarung die Möglichkeit, eine Kapitalbeteiligung am Unternehmen zu erwerben. Um sich die Minderheitsbeteiligung an der Susta Sustainable Merchandise Handels GmbH “zu verdienen”, soll McWin für Umsätze im zweistelligen Millionenbereich sorgen, heißt es.

McWin hat bereits die Einführung bei führenden, weltweit bekannten Marken wie Popeyes, Subway und Burger King ermöglicht. Im kommenden Jahrzehnt wird ein Anstieg auf 30 Milliarden US-Dollar Gesamtwert im Markt für Einweghandschuhe erwartet. Gründe dafür sind strengere Vorschriften, sowie die Erschließung neuer Marktregionen, insbesondere in Afrika und Südamerika.

ElephantSkin: mehrere Unternehmen standen zur Auswahl

„Nach unserer erfolgreichen Markteinführung haben wir uns mehrere Unternehmen angesehen, um eine strategische Partnerschaft im Lebensmittel Ökosystem beziehungsweise im Hospitality-Sektor einzugehen und sind nach eingehender Analyse zum Entschluss gekommen, dass McWin der richtige Partner für uns ist, um unser Geschäft sehr gezielt zu skalieren”, sagt Raphael Reifeltshammer, CEO von ElephantSkin.

Martin Davalos, Partner und Leiter FoodTech bei McWin Capital Partners, sagt: „Die Partnerschaft mit ElephantSkin markiert den Beginn einer transformativen Ära auf dem Markt für Einweg-Plastikhandschuhe und schafft einen Präzedenzfall für Nachhaltigkeit und Innovation im Lebensmittel-Ökosystem. Wir teilen ein unerschütterliches Engagement für bahnbrechende Lösungen, die nicht nur der Umwelt zugutekommen, sondern auch die Arbeitsbedingungen und die Hygienestandards verbessern.“

Über McWin

McWin Capital Partners ist eine spezialisierte Private-Equity- und Risikokapitalgesellschaft, die sich dem Lebensmittel-Ökosystem widmet. McWin verwaltet insgesamt über 1 Milliarde Euro in drei Fonds – McWin Food Ecosystem Fund, McWin Restaurant Fund und McWin Food Technology Fund. Diese Funds unterstützen Gründer:innen und CEOs bei nachhaltigen Veränderungen in der Lebensmittelindustrie.

Seit 2021 hat McWin mehr als 20 Foodservice- und Lebensmitteltechnologieunternehmen in der Wachstums- und Reifephase unterstützt. McWin stellt neben Kapital für Wachstum auch ein Netzwerk an erfahrenen Gründer:innen in der Lebensmittelindustrie bereit.

Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag

AI Summaries

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Welche gesellschaftspolitischen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Welche wirtschaftlichen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Innovationsmanager:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Investor:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Politiker:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Was könnte das Bigger Picture von den Inhalten dieses Artikels sein?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Wer sind die relevantesten Personen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Wer sind die relevantesten Organisationen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.