24.05.2021

Back Market Gründer über das 276 Millionen Euro Investment und die Expansionspläne für Österreich

Das französische Scaleup Back Market, das einen Marktplatz für generalüberholte Produkte betreibt, konnte sich von internationalen Investoren ein 276 Millionen Euro Investment sichern. Im Interview mit Brutkasten Earth gibt Co-Founder und CEO Thibaud Hug de Larauze einen exklusiven Einblick in die internationale Skalierungsstrategie und spricht über seine Expansionspläne für den österreichischen Markt.
/artikel/back-market-interview-thibaud-hug-de-larauze
Back Market
Im Jahr 2014 gründeten Quentin Le Brouster, Thibaud Hug de Larauze, Vianney Vaute, das Unternehmen in Paris v.l.n.r.) | (c) Julie Glassberg

Anfang letzter Woche sorgte das 276 Millionen Euro schwere Investment für das französische Scaleup Back Market, das einen Marktplatz für generalüberholte Elektronik-Produkte betreibt, für internationale Schlagzeilen. Die Series-D-Investitionsrunde wurde von der global agierenden Growth-Equity-Gesellschaft General Atlantic und eine Reihe namhafter VC-Investoren angeführt und soll nun den Weg für die globale Skalierung ebnen. Neben zahlreichen europäischen Ländern ist Back Market mittlerweile in Nordamerika und Asien aktiv.

Im Interview mit Brutkasten Earth gibt Back Market Co-Founder und CEO Thibaud Hug de Larauze einen exklusiven Einblick, wie er gemeinsam mit seinem Team, das mittlerweile rund 480 Mitarbeiter umfasst, die globale Skalierung weiter forcieren möchte. Zudem spricht Hug de Larauze, der das Startup 2014 mit zwei weiteren Mitstreitern gründete, über seine Expansionspläne für Österreich und warum sich der österreichische Markt für generalüberholte Produkte gegenüber anderen Märkten unterscheidet.


Welche konkreten Wachstumsziele habt ihr an das 276 Millionen Euro schwere Investment geknüpft?

Unser Team ist bereits von gut 200 Mitarbeitern Anfang 2020 auf heute rund 480 Mitarbeiter gewachsen. Was die Anzahl der Kunden angeht, konnten wir gerade die 5-Millionen-Marke knacken. Künftig wollen wir dieses Wachstum in Europa und weiteren Ländern fortsetzen. Back Market ist in diesem Jahr bereits in Finnland, Portugal, Irland und Japan gestartet und damit nun in insgesamt 13 Ländern aktiv. In Kürze werden wir auch in Griechenland, Schweden, der Slowakei und Kanada auf dem Markt sein.

Wie sieht aktuell die Kostenstruktur von Back Market aus – könnt ihr euch schon aus dem Cashflow finanzieren? 

Was wir sagen können ist, dass der Markt für Neugeräte ein 1,5 Billionen Dollar schwerer Markt ist. Entsprechend braucht es sehr viel Skalierung, um mit diesem Markt auf Augenhöhe gehen zu können. Für die Skalierung und Schnelligkeit müssen wir viel investieren und neue Mitarbeiter einstellen. Dafür brauchen wir Bargeld, so dass wir automatisch alles, was wir verdienen, wieder investieren, um unser Unternehmen weiterzuentwicklen und globaler zu werden. 

Wofür wollt ihr das frische Kapital einsetzen und wie viel wird davon in Marketing-Aktivitäten fließen?

Mit dem frischen Kapital werden wir vor allem in drei Bereiche investieren: die Qualität und Kundenzufriedenheit, die Händlerservices und unsere „Winner takes it all“-Strategie. Hier planen wir ein noch schnelleres Tempo für die aktuellen Länder sowie die weltweite Expansion. Wie viel davon in Marketing-Aktivitäten fließt, kommunizieren wir nicht. 

Was sich aber herauskristallisiert, ist, dass sich 40 Prozent unserer Kunden eher in einer finanziell schwächeren Situation befinden und entweder Studierende sind, gerade keine Arbeit haben oder in Teilzeit arbeiten.

Stichwort Marketing: Welche Strategie verfolgt ihr im Marketing-Bereich und wie wollt ihr die Plattform bzw. Marke bekannter machen?

Als Marke steht Back Market dafür, es für jeden cool und einfach zu machen, generalüberholte Elektronikgeräte zu kaufen. Unsere Mission ist es, erneuerte Elektronik zu einer attraktiven Alternative zu Neugeräten zu machen, um die Umweltbelastung durch Technik zu verringern und eine gut funktionierende Kreislaufwirtschaft zu erschaffen. Um das zu erreichen, müssen wir die Denkweise rund um den Kauf „nicht neuer“ Elektronikgeräte grundlegend ändern.

Wie sieht der typische Back Market Kunde aus und wie hoch ist der Anteil an “Recurring-Customers”? 

Den typischen Kunden gibt es nicht. Tatsächlich sind bei uns sehr unterschiedliche Kundentypen mit dabei. Was sich aber herauskristallisiert, ist, dass sich 40 Prozent unserer Kunden eher in einer finanziell schwächeren Situation befinden und entweder Studierende sind, gerade keine Arbeit haben oder in Teilzeit arbeiten. Die meisten unserer Kunden kommen erstmals zu Back Market, um ein Smartphone zu kaufen, weil sie es bei uns 30 bis 70 Prozent günstiger finden als zum Neupreis. Dann kommen sie zurück, um Computer oder Haushaltsgeräte zu kaufen.

Was sind aktuell die Hauptmotive eurer Kunden – wollen sie primär preiswerte Elektronikprodukte kaufen oder steht auch der Umweltgedanke im Vordergrund? 

Anfangs waren die ökologischen Beweggründe in allen Ländern, in denen wir gestartet sind,  sehr, sehr gering und der Preis stand an erster Stelle. Mittlerweile sehen wir aber, wie sich die Mentalität verändert. Wir hatten unsere Kunden zu Beginn gefragt, warum sie Refurbished- Geräte kaufen: Während es zunächst drei Prozent aus einem ökologischem Antrieb heraus taten, sind es jetzt schon 20 Prozent.  

Für uns ist es in Österreich schwieriger, Fuß zu fassen als in Deutschland, da es bereits einen etablierten Marktplatz für Refurbished gibt.

Wie grenzt Back Market sich von anderen Plattformen für generalüberholte Produkte am Markt ab? 

Mit Back Market waren wir bereits ein früher Pionier in einem wachsenden Sektor der Elektronik – professionell wiederaufbereitete Elektronikgeräte. Im Gegensatz zu anderen Marktplätzen bietet Back Market Konsumenten dabei mehr als nur die Möglichkeit, Elektronik günstiger zu kaufen. Wir wollen sie zugleich über die Kreislaufwirtschaft aufklären und ihnen zeigen, dass sie auch beim Kauf gebrauchter Elektronik keine Abstriche machen und hier nicht länger Qualität gegen Preis eintauschen müssen.

Eine weitere Besonderheit ist, dass wir stark auf Technologie setzen, um unser Angebot zu optimieren und den Kauf von erneuerten Produkten genauso einfach und angenehm zu gestalten wie den neuer Produkte. Unsere sepzielle Buybox-Funktion ist ein gutes Beispiel dafür. Im Gegensatz zu den meisten anderen Marktplätzen zeigen wir unseren Kunden nicht den gesamten Katalog auf einmal an. Stattdessen verwenden wir einen Algorithmus, der sicherstellt, dass wir für jede beliebige Produkt-ID oder SKU (Modell, Sorte, Lagerung, Farbe) nur das beste Produkt aus allen Optionen anzeigen, die von den Refurbishern, die auf unserer Website verkaufen, angeboten werden. Das „beste“ Produkt ist eine Entscheidung, die viele verschiedene Faktoren berücksichtigt, die sowohl mit der Qualität als auch mit dem Preis zu tun haben, einschließlich der Historie zur Qualität und Kundendienstleistung des jeweiligen Händlers.

Seht ihr euch aus Unternehmensperspektive als Konkurrenz zu Plattformen wie Ebay oder lokalen Marktplätzen und Anzeigenportalen? Wie sehen das die Kunden?

Nein. Wir sind kein einfacher E-Commerce Marktplatz. Wir sind ein Kreislauf-Marktplatz und widmen uns voll und ganz dem übergeordneten Ziel der Nachhaltigkeit. Wir sprechen eine Käufergruppe an, die anders denken will und damit ein Zeichen setzen will. Es geht darum, überlegter zu konsumieren. Unsere Kunden identifizieren sich mit unseren Werten und stimmen uns dabei zu, mit dem Status Quo der Elektronikindustrie brechen zu wollen.

Die Mehrheit sind sicherlich keine Impulskäufer.

Welches Wachstum habt ihr euch für den österreichischen Markt vorgenommen? 

Österreich ist ein unglaublich spannender Markt. Die Konsumenten orientieren sich an ähnlichen Werten wie die deutschen Konsumenten, Nachhaltigkeit hat dabei einen hohen Stellenwert. Für uns ist es in Österreich schwieriger, Fuß zu fassen als in Deutschland, da es bereits einen etablierten Marktplatz für Refurbished gibt. Unser Angebot ist allerdings wesentlich breiter, preislich attraktiver und mit einer längeren Garantie. Deswegen hoffen wir, dass wir auch die österreichische Kundschaft von unserem Modell überzeugen können. 

Inwiefern unterscheidet sich der österreichische Markt für generalüberholte Produkte von anderen Märkten? (eventuell spezifische Herausforderungen)

Wie auch in Deutschland kennen viele Konsumenten in Österreich den genauen Unterschied zwischen „gebraucht“ und „refurbished“ noch gar nicht und verhalten sich vorsichtig gegenüber dem, was ihnen neu ist. Die Mehrheit sind also sicherlich keine Impulskäufer, was auch sehr gut ist. Vertrauen gewinnt man nur, wenn man liefert und nicht nur herumredet. We are up to the challenge!

Mittlerweile gibt es am Markt auch Anbieter, die Elektronikprodukte zum Mieten anbieten. Wäre dieses Geschäftsfeld auch für Back Market interessant? 

Nein, wir konzentrieren uns auf unsere Mission: Hochwertige Technologie zugänglicher zu machen, indem wir den Kauf generalüberholter Geräte sicherer, einfacher und attraktiver für die Allgemeinheit machen.


Factbox zum Thema Elektronik-Schrott

Der durchschnittliche Europäer behält sein Smartphone nicht einmal zwei Jahre, obwohl es oftmals ohne Probleme fünf Jahre halten könnte. Ganze 80 Prozent der CO2-Emissionen, die während des gesamten Lebenszyklus eines Smartphones ausgestoßen werden, entstehen bei der Produktion. Und: Die weltweite Menge des Elektroschrotts erreichte im Jahr 2019 ein Rekordaufkommen von 53,6 Millionen Tonnen und wird den Vorhersagen der Vereinten Nationen zufolge bis zum Jahr 2030 rund 74 Millionen Tonnen erreichen.
Deine ungelesenen Artikel:
27.01.2025

Open Source und KI: „Es geht nicht darum, zu den Guten zu gehören“

Nachlese. Die Nutzung von Open-Source-Modellen eröffnet Unternehmen auch im KI-Bereich weitreichende Möglichkeiten. Es gibt dabei aber auch einiges zu bedenken. Darüber und mehr diskutierten in Folge 5 von "No Hype KI" Stephan Kraft von Red Hat, Florian Böttcher von CANCOM Austria, Natalie Ségur-Cabanac von Women in AI und Patrick Ratheiser von Leftshift.One.
/artikel/no-hype-ki-folge-5
27.01.2025

Open Source und KI: „Es geht nicht darum, zu den Guten zu gehören“

Nachlese. Die Nutzung von Open-Source-Modellen eröffnet Unternehmen auch im KI-Bereich weitreichende Möglichkeiten. Es gibt dabei aber auch einiges zu bedenken. Darüber und mehr diskutierten in Folge 5 von "No Hype KI" Stephan Kraft von Red Hat, Florian Böttcher von CANCOM Austria, Natalie Ségur-Cabanac von Women in AI und Patrick Ratheiser von Leftshift.One.
/artikel/no-hype-ki-folge-5

„No Hype KI“ wird unterstützt von CANCOM AustriaIBMITSVMicrosoftNagarroRed Hat und Universität Graz.

Kollaborativ, transparent, frei zugänglich und nicht profit-orientiert – mit Open-Source-Software wird eine Reihe von Eigenschaften assoziiert. Und oftmals stehen bei der Nutzung ethische Überlegungen im Zentrum. Dabei gibt es auch ganz praktische Gründe, die für eine Verwendung durch Unternehmen sprechen – auch bei der Implementierung von KI-Anwendungen, ist Stephan Kraft, Community Advocate & Business Development OpenShift & Application Services bei Red Hat, überzeugt. In Folge fünf der Serie „No Hype KI“ diskutierte er dieses und weitere Themen mit Florian Böttcher, Solution Architect bei CANCOM Austria, Natalie Ségur-Cabanac, Policy Lead bei Women in AI und Patrick Ratheiser, Gründer & CEO von Leftshift.One.

„Thema ein Stück weit aus dieser emotionalen, moralisierenden Ecke herausholen“

„Ich will das Thema ein Stück weit aus dieser emotionalen, moralisierenden Ecke herausholen“, sagt Stephan Kraft. Für Red Hat als weltweit führenden Anbieter für Open-Source-Lösungen für Unternehmen gehen die Argumente für eine Nutzung nämlich weit darüber hinaus. „Es geht nicht darum, Open Source als Selbstzweck zu sehen, um zu den Guten zu gehören“, so der Experte. Tatsächlich sei die Verwendung von Open Source gerade bei der Etablierung von KI im Unternehmen für Startups und KMU eine wichtige Weichenstellung.

Offenheit, um Diskriminierung entgegenzuwirken

Auch Natalie Ségur-Cabanac sieht Open Source als „Key Technology“ im KI-Bereich. Für „Women in AI“ spiele die Offenheit eine zentrale Rolle: „Diese Offenheit braucht es, um Diskriminierung entgegenzuwirken.“ Open Source verbessere den Zugang für Frauen zur Technologie, die Abbildung von Frauen in den Daten und es vergrößere die Möglichkeiten in der Forschung. Man müsse aber auch aufpassen, ob Software wirklich so offen sei, wie behauptet, sagt sie bezogen auf die aktuellen Diskussionen rund um OpenAI, das sich – ursprünglich als offenes Projekt gestartet – zum profitorientierten Unternehmen entwickelte. Es brauche auch eine klare Definition, was „open“ sei.

Masse an Möglichkeiten

Leftshift.One-Gründer Patrick Ratheiser betont auch die schiere Masse an Möglichkeiten, die Open Source bietet. „2021 hatten wir weltweit Zugriff auf circa 5.000 Open-Source-Modelle. Jetzt sind es bereits mehr als eine Million.“ Die Nutzbarkeit sei also klar gegeben, zudem biete die Technologie eine gewisse Unabhängigkeit und werde über ihre Vielfalt zum Innovationstreiber.

Ist Open Source immer die beste Lösung?

Doch bedeutet das, dass Open Source immer die optimale Lösung ist? Ratheiser sieht das differenziert: „Es ist ganz wichtig zu erkennen, was der Kunde braucht und was in dem Fall gerade notwendig ist. Egal, ob es nun On-Premise, in der Cloud, Open Source oder Closed Source ist.“ Florian Böttcher von CANCOM Austria pflichtet hier bei: „Wir setzen genau so auf hybrid.“

Datenstruktur im Hintergrund ist entscheidend

Ein Thema, bei dem bei Open Source Vorsicht geboten ist, spricht Natalie Ségur-Cabanac an. Besonders wichtig sei es bei KI-Anwendungen, eine gute Datenstruktur im Hintergrund zu haben. „Die Verantwortung, dass ein Modell mit sauberen Daten trainiert worden ist, liegt bei den Anbietern. Bei Open Source verschwimmt das ein bisschen. Wer ist wofür zuständig? Das ist eine Herausforderung für die Compliance zu schauen, wo man selbst verantwortlich ist und wo man sich auf einen Anbieter verlassen kann.“

Compliance: Großes Thema – mehr Sichereheit mit professioneller Unterstützung

Stephan Kraft hakt hier ein. Genau aus solchen Gründen gebe es Unternehmen wie Red Hat, die mit ihrem Enterprise-Support für Open-Source-Lösungen die Qualitätssicherung auch im rechtlichen Bereich übernehmen. „Das ist ein ganz wichtiger Teil unseres Versprechens gegenüber Kunden“, so Kraft. Unbedacht im Unternehmen mit Open Source zu arbeiten, könne dagegen in „Compliance-Fallen“ führen, pflichtet er Ségur-Cabanac bei.

Das sieht auch Patrick Ratheiser als Thema bei Leftshift.One: „Unsere Lösung ist Closed Source, wir setzen aber im Hintergrund Open Source ein. Wichtig ist, dass wir dem Kunden Compliance garantieren können.“ Stephan Kraft empfiehlt Unternehmen bei der Open-Source-Nutzung: „Man kann nicht immer gleich die neueste ‚bleeding edge‘-Lösung nehmen sondern sollte etwas konservativer herangehen.“

Infrastruktur: Gut planen, was man wirklich braucht

Unabhängig davon, ob man nun Open Source oder Closed Source nutzt, braucht es für die Nutzung von KI die richtige Infrastruktur. „Es kommt natürlich auf den Use Case an, den ein Unternehmen umsetzen will. Da sind die Anforderungen an die Infrastruktur sehr unterschiedlich“, grenzt Florian Böttcher ein. CANCOM Austria unterstützt seine Kunden in genau der Frage. Anwendungen wie das Training von KI-Modellen würde aus gutem Grund kaum in Österreich umgesetzt. „KI ist sehr stromhungrig und entwickelt viel Hitze. Das ist schwierig für ein eigenes Data-Center im Unternehmen, gerade wenn man die Strompreise in Österreich ansieht“, so Böttcher.

„Rechenleistungs-Hunger“ von KI könnte sich in Zukunft verringern

Wichtig sei es letztlich, sich als Unternehmen sehr klar darüber zu sein, was man umsetzen wolle. „Danach, welche Software-Lösung man für seinen Use Case einsetzen muss, richtet sich auch die Infrastruktur“, so Böttcher. Er erwarte aber auch, dass die KI-Modelle im nächsten Entwicklungsschritt effizienter werden und der „Rechenleistungs-Hunger“ sich verringere.

Patrick Ratheiser ergänzt: „Es ist grundsätzlich eine Kostenfrage.“ Unternehmen müssten sich sehr gut überlegen, ob sie ein eigenes LLM (Large Language Model) betreiben und dieses sogar selbst trainieren wollen, oder lieber doch eine Usage-basierte Lösung wählen. Er sehe bei österreichischen Unternehmen – auch bei größeren – eine klare Tendenz zur zweiten Variante. „Es lässt sich deutlich schneller einrichten, ist kalkulierbarer und auch viel schneller skalierbar“, erklärt Ratheiser.

Etwa im Forschungsbereich sei es jedoch wichtig und notwendig, auch eigene LLMs und die damit verbundene Infrastruktur zu betreiben. Doch auch die Möglichkeit von hybriden Lösungen biete sich an. „Man kann mittlerweile auch Teile in der Cloud lassen und Teile On-Premise. Man kann etwa nur ein datenschutzsicheres LLM selbst betreiben“, erklärt der Experte, der auch bei der Wahl der genutzten Modelle einen hybriden Ansatz empfiehlt: „Man braucht nicht für alle Use Cases das neueste Modell. Manchmal braucht man überhaupt kein LLM.“

Datenschutz: Einige Herausforderungen bei LLMs

Stichwort: Datenschutz. Hier schafft die europäische Datenschutzgrundverordnung (DSGVO) im KI-Bereich besondere Herausforderungen, weiß Natalie Ségur-Cabanac, die vorab betont: „Ich persönlich halte die DSGVO für ein gutes Regulierungswerk, weil sie sehr viel Spielraum gibt. Ich sage immer: Datenschutz ist sehr komplex, aber nicht kompliziert.“ Konkret seien etwa der Grundsatz der Zweckbezogenheit, also dass man Daten nur für konkrete Zwecke einsetzen darf, und dass man sie minimierend einsetzen muss, relevant für den KI-Bereich. „Da haben wir schon einen Konflikt, weil man ja [bei LLMs] erst einmal schaut, was man aus möglichst vielen Daten machen kann“, so die Expertin.

Ist KI rechtlich innerhalb der EU sogar per se in einem Graubereich?

Auch Transparenzbestimmungen – sowohl in der DSGVO als auch im AI-Act der EU – seien zu beachten. „Wenn ich KI verwende, muss ich auch wissen, was drinnen ist“, fasst Ségur-Cabanac zusammen. Ist KI also rechtlich innerhalb der EU sogar per se in einem Graubereich? „Nein, das glaube ich nicht. Aber man muss seine Hausaufgaben schon gut machen“, sagt die Expertin. Wichtig sei daher auch die im Rahmen des EU-AI-Acts eingeforderte KI-Kompetenz in Unternehmen – im technischen und rechtlichen Bereich.

KI-Kompetenz als zentrales Thema

Patrick Ratheiser stimmt zu: „Neben der Technologie selber sind bei unseren Kunden die Mitarbeiter ein Riesen-Thema. Man muss sie nicht nur wegen dem AI-Act fit bekommen, sondern es geht darum, sie wirklich auf die Anwendungen einzuschulen.“ Wichtig seien dabei auch die Kolleg:innen, die sich bereits mit dem Thema auskennen – die „Pioniere“ im Unternehmen. „AI Literacy ist sicherlich das Thema 2025 und in nächster Zeit. So, wie wir gelernt haben, mit dem Smartphone umzugehen, werden wir es auch mit generativer KI lernen“, so Ratheiser.

„Einfach einmal ausprobieren“

Stephan Kraft ergänzt: Neben einer soliden Datenbasis und der notwendigen Kompetenz brauche es bei KI – gerade auch im Bereich Open Source – noch etwas: „Einfach einmal ausprobieren. Es braucht auch Trial and Error. Das ist vielleicht oft das Schwierigste für CFOs und Geschäftsführer.“ Dieses Ausprobieren sollte aber innerhalb eines festgelegten Rahmens passieren, damit die KI-Implementierung gelingt, meint Natalie Ségur-Cabanac: „Unternehmen brauchen eine KI-Strategie und müssen wissen, was sie mit der Technologie erreichen wollen.“ Auch sich mit den zuvor angesprochenen rechtlichen Anforderungen – Stichwort Compliance – zu beschäftigen, komme zeitlich erst nach der Festlegung der Strategie.


Die gesamte Folge ansehen:

Die Nachlesen der bisherigen Folgen:

Folge 1: “No Hype KI – wo stehen wir nach zwei Jahren ChatGPT?

Folge 2: “Was kann KI in Gesundheit, Bildung und im öffentlichen Sektor leisten?

Folge 3: “Der größte Feind ist Zettel und Bleistift”: Erfolgsfaktoren und Herausforderungen in der KI-Praxis”

Folge 4: KI-Geschäftsmodelle: “Wir nutzen nur einen Bruchteil dessen, was möglich ist”


Die Serie wird von brutkasten in redaktioneller Unabhängigkeit mit finanzieller Unterstützung unserer Partner:innen produziert.

No Hype KI
27.01.2025

Open Source und KI: „Es geht nicht darum, zu den Guten zu gehören“

Nachlese. Die Nutzung von Open-Source-Modellen eröffnet Unternehmen auch im KI-Bereich weitreichende Möglichkeiten. Es gibt dabei aber auch einiges zu bedenken. Darüber und mehr diskutierten in Folge 5 von "No Hype KI" Stephan Kraft von Red Hat, Florian Böttcher von CANCOM Austria, Natalie Ségur-Cabanac von Women in AI und Patrick Ratheiser von Leftshift.One.
27.01.2025

Open Source und KI: „Es geht nicht darum, zu den Guten zu gehören“

Nachlese. Die Nutzung von Open-Source-Modellen eröffnet Unternehmen auch im KI-Bereich weitreichende Möglichkeiten. Es gibt dabei aber auch einiges zu bedenken. Darüber und mehr diskutierten in Folge 5 von "No Hype KI" Stephan Kraft von Red Hat, Florian Böttcher von CANCOM Austria, Natalie Ségur-Cabanac von Women in AI und Patrick Ratheiser von Leftshift.One.

„No Hype KI“ wird unterstützt von CANCOM AustriaIBMITSVMicrosoftNagarroRed Hat und Universität Graz.

Kollaborativ, transparent, frei zugänglich und nicht profit-orientiert – mit Open-Source-Software wird eine Reihe von Eigenschaften assoziiert. Und oftmals stehen bei der Nutzung ethische Überlegungen im Zentrum. Dabei gibt es auch ganz praktische Gründe, die für eine Verwendung durch Unternehmen sprechen – auch bei der Implementierung von KI-Anwendungen, ist Stephan Kraft, Community Advocate & Business Development OpenShift & Application Services bei Red Hat, überzeugt. In Folge fünf der Serie „No Hype KI“ diskutierte er dieses und weitere Themen mit Florian Böttcher, Solution Architect bei CANCOM Austria, Natalie Ségur-Cabanac, Policy Lead bei Women in AI und Patrick Ratheiser, Gründer & CEO von Leftshift.One.

„Thema ein Stück weit aus dieser emotionalen, moralisierenden Ecke herausholen“

„Ich will das Thema ein Stück weit aus dieser emotionalen, moralisierenden Ecke herausholen“, sagt Stephan Kraft. Für Red Hat als weltweit führenden Anbieter für Open-Source-Lösungen für Unternehmen gehen die Argumente für eine Nutzung nämlich weit darüber hinaus. „Es geht nicht darum, Open Source als Selbstzweck zu sehen, um zu den Guten zu gehören“, so der Experte. Tatsächlich sei die Verwendung von Open Source gerade bei der Etablierung von KI im Unternehmen für Startups und KMU eine wichtige Weichenstellung.

Offenheit, um Diskriminierung entgegenzuwirken

Auch Natalie Ségur-Cabanac sieht Open Source als „Key Technology“ im KI-Bereich. Für „Women in AI“ spiele die Offenheit eine zentrale Rolle: „Diese Offenheit braucht es, um Diskriminierung entgegenzuwirken.“ Open Source verbessere den Zugang für Frauen zur Technologie, die Abbildung von Frauen in den Daten und es vergrößere die Möglichkeiten in der Forschung. Man müsse aber auch aufpassen, ob Software wirklich so offen sei, wie behauptet, sagt sie bezogen auf die aktuellen Diskussionen rund um OpenAI, das sich – ursprünglich als offenes Projekt gestartet – zum profitorientierten Unternehmen entwickelte. Es brauche auch eine klare Definition, was „open“ sei.

Masse an Möglichkeiten

Leftshift.One-Gründer Patrick Ratheiser betont auch die schiere Masse an Möglichkeiten, die Open Source bietet. „2021 hatten wir weltweit Zugriff auf circa 5.000 Open-Source-Modelle. Jetzt sind es bereits mehr als eine Million.“ Die Nutzbarkeit sei also klar gegeben, zudem biete die Technologie eine gewisse Unabhängigkeit und werde über ihre Vielfalt zum Innovationstreiber.

Ist Open Source immer die beste Lösung?

Doch bedeutet das, dass Open Source immer die optimale Lösung ist? Ratheiser sieht das differenziert: „Es ist ganz wichtig zu erkennen, was der Kunde braucht und was in dem Fall gerade notwendig ist. Egal, ob es nun On-Premise, in der Cloud, Open Source oder Closed Source ist.“ Florian Böttcher von CANCOM Austria pflichtet hier bei: „Wir setzen genau so auf hybrid.“

Datenstruktur im Hintergrund ist entscheidend

Ein Thema, bei dem bei Open Source Vorsicht geboten ist, spricht Natalie Ségur-Cabanac an. Besonders wichtig sei es bei KI-Anwendungen, eine gute Datenstruktur im Hintergrund zu haben. „Die Verantwortung, dass ein Modell mit sauberen Daten trainiert worden ist, liegt bei den Anbietern. Bei Open Source verschwimmt das ein bisschen. Wer ist wofür zuständig? Das ist eine Herausforderung für die Compliance zu schauen, wo man selbst verantwortlich ist und wo man sich auf einen Anbieter verlassen kann.“

Compliance: Großes Thema – mehr Sichereheit mit professioneller Unterstützung

Stephan Kraft hakt hier ein. Genau aus solchen Gründen gebe es Unternehmen wie Red Hat, die mit ihrem Enterprise-Support für Open-Source-Lösungen die Qualitätssicherung auch im rechtlichen Bereich übernehmen. „Das ist ein ganz wichtiger Teil unseres Versprechens gegenüber Kunden“, so Kraft. Unbedacht im Unternehmen mit Open Source zu arbeiten, könne dagegen in „Compliance-Fallen“ führen, pflichtet er Ségur-Cabanac bei.

Das sieht auch Patrick Ratheiser als Thema bei Leftshift.One: „Unsere Lösung ist Closed Source, wir setzen aber im Hintergrund Open Source ein. Wichtig ist, dass wir dem Kunden Compliance garantieren können.“ Stephan Kraft empfiehlt Unternehmen bei der Open-Source-Nutzung: „Man kann nicht immer gleich die neueste ‚bleeding edge‘-Lösung nehmen sondern sollte etwas konservativer herangehen.“

Infrastruktur: Gut planen, was man wirklich braucht

Unabhängig davon, ob man nun Open Source oder Closed Source nutzt, braucht es für die Nutzung von KI die richtige Infrastruktur. „Es kommt natürlich auf den Use Case an, den ein Unternehmen umsetzen will. Da sind die Anforderungen an die Infrastruktur sehr unterschiedlich“, grenzt Florian Böttcher ein. CANCOM Austria unterstützt seine Kunden in genau der Frage. Anwendungen wie das Training von KI-Modellen würde aus gutem Grund kaum in Österreich umgesetzt. „KI ist sehr stromhungrig und entwickelt viel Hitze. Das ist schwierig für ein eigenes Data-Center im Unternehmen, gerade wenn man die Strompreise in Österreich ansieht“, so Böttcher.

„Rechenleistungs-Hunger“ von KI könnte sich in Zukunft verringern

Wichtig sei es letztlich, sich als Unternehmen sehr klar darüber zu sein, was man umsetzen wolle. „Danach, welche Software-Lösung man für seinen Use Case einsetzen muss, richtet sich auch die Infrastruktur“, so Böttcher. Er erwarte aber auch, dass die KI-Modelle im nächsten Entwicklungsschritt effizienter werden und der „Rechenleistungs-Hunger“ sich verringere.

Patrick Ratheiser ergänzt: „Es ist grundsätzlich eine Kostenfrage.“ Unternehmen müssten sich sehr gut überlegen, ob sie ein eigenes LLM (Large Language Model) betreiben und dieses sogar selbst trainieren wollen, oder lieber doch eine Usage-basierte Lösung wählen. Er sehe bei österreichischen Unternehmen – auch bei größeren – eine klare Tendenz zur zweiten Variante. „Es lässt sich deutlich schneller einrichten, ist kalkulierbarer und auch viel schneller skalierbar“, erklärt Ratheiser.

Etwa im Forschungsbereich sei es jedoch wichtig und notwendig, auch eigene LLMs und die damit verbundene Infrastruktur zu betreiben. Doch auch die Möglichkeit von hybriden Lösungen biete sich an. „Man kann mittlerweile auch Teile in der Cloud lassen und Teile On-Premise. Man kann etwa nur ein datenschutzsicheres LLM selbst betreiben“, erklärt der Experte, der auch bei der Wahl der genutzten Modelle einen hybriden Ansatz empfiehlt: „Man braucht nicht für alle Use Cases das neueste Modell. Manchmal braucht man überhaupt kein LLM.“

Datenschutz: Einige Herausforderungen bei LLMs

Stichwort: Datenschutz. Hier schafft die europäische Datenschutzgrundverordnung (DSGVO) im KI-Bereich besondere Herausforderungen, weiß Natalie Ségur-Cabanac, die vorab betont: „Ich persönlich halte die DSGVO für ein gutes Regulierungswerk, weil sie sehr viel Spielraum gibt. Ich sage immer: Datenschutz ist sehr komplex, aber nicht kompliziert.“ Konkret seien etwa der Grundsatz der Zweckbezogenheit, also dass man Daten nur für konkrete Zwecke einsetzen darf, und dass man sie minimierend einsetzen muss, relevant für den KI-Bereich. „Da haben wir schon einen Konflikt, weil man ja [bei LLMs] erst einmal schaut, was man aus möglichst vielen Daten machen kann“, so die Expertin.

Ist KI rechtlich innerhalb der EU sogar per se in einem Graubereich?

Auch Transparenzbestimmungen – sowohl in der DSGVO als auch im AI-Act der EU – seien zu beachten. „Wenn ich KI verwende, muss ich auch wissen, was drinnen ist“, fasst Ségur-Cabanac zusammen. Ist KI also rechtlich innerhalb der EU sogar per se in einem Graubereich? „Nein, das glaube ich nicht. Aber man muss seine Hausaufgaben schon gut machen“, sagt die Expertin. Wichtig sei daher auch die im Rahmen des EU-AI-Acts eingeforderte KI-Kompetenz in Unternehmen – im technischen und rechtlichen Bereich.

KI-Kompetenz als zentrales Thema

Patrick Ratheiser stimmt zu: „Neben der Technologie selber sind bei unseren Kunden die Mitarbeiter ein Riesen-Thema. Man muss sie nicht nur wegen dem AI-Act fit bekommen, sondern es geht darum, sie wirklich auf die Anwendungen einzuschulen.“ Wichtig seien dabei auch die Kolleg:innen, die sich bereits mit dem Thema auskennen – die „Pioniere“ im Unternehmen. „AI Literacy ist sicherlich das Thema 2025 und in nächster Zeit. So, wie wir gelernt haben, mit dem Smartphone umzugehen, werden wir es auch mit generativer KI lernen“, so Ratheiser.

„Einfach einmal ausprobieren“

Stephan Kraft ergänzt: Neben einer soliden Datenbasis und der notwendigen Kompetenz brauche es bei KI – gerade auch im Bereich Open Source – noch etwas: „Einfach einmal ausprobieren. Es braucht auch Trial and Error. Das ist vielleicht oft das Schwierigste für CFOs und Geschäftsführer.“ Dieses Ausprobieren sollte aber innerhalb eines festgelegten Rahmens passieren, damit die KI-Implementierung gelingt, meint Natalie Ségur-Cabanac: „Unternehmen brauchen eine KI-Strategie und müssen wissen, was sie mit der Technologie erreichen wollen.“ Auch sich mit den zuvor angesprochenen rechtlichen Anforderungen – Stichwort Compliance – zu beschäftigen, komme zeitlich erst nach der Festlegung der Strategie.


Die gesamte Folge ansehen:

Die Nachlesen der bisherigen Folgen:

Folge 1: “No Hype KI – wo stehen wir nach zwei Jahren ChatGPT?

Folge 2: “Was kann KI in Gesundheit, Bildung und im öffentlichen Sektor leisten?

Folge 3: “Der größte Feind ist Zettel und Bleistift”: Erfolgsfaktoren und Herausforderungen in der KI-Praxis”

Folge 4: KI-Geschäftsmodelle: “Wir nutzen nur einen Bruchteil dessen, was möglich ist”


Die Serie wird von brutkasten in redaktioneller Unabhängigkeit mit finanzieller Unterstützung unserer Partner:innen produziert.

No Hype KI
Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag