Ein Geschäft neu aufzubauen bringt bekanntlich viele Learnings auf dem Weg mit sich. Wenn man das Geschäft in so einem sensiblen Bereich wie dem Bankenwesen aufbaut, können diese Learnings auch ziemlich teuer werden. Diese Erfahrung musste die Berliner Neobank N26 der Wiener Gründer Valentin Stalf und Maximilian Tayenthal nun ein weiteres Mal machen.
Nicht das erste BaFin-Bußgeld für N26
In den vergangenen Jahren war N26 bereits mehrmals ins Visier der deutschen Finanzmarktaufsicht BaFin geraten. Schon 2019 etwa gab es eine Hausdurchsuchung in Zusammenhang mit Meldepflichten im Bereich Geldwäsche- und Terrorismus-Prävention, wie brutkasten damals berichtete. Später musste die Neobank 4,25 Millionen Euro Strafe zahlen und bekam vorübergehend eine Wachstumsbeschränkung von 50.000 Neukunden:innen im Monat auferlegt.
Verspätung bei Abgabe von Geldwäscheverdachtsmeldungen
Nun wurde ein weiteres Bußgeld gegen N26 verhängt, nachdem seit 2022 ein Ordnungswidrigkeitsverfahren gelaufen war – abermals wegen Mängeln bei der Abgabe von Geldwäscheverdachtsmeldungen. Diese müssen nämlich per Gesetz unverzüglich erfolgen, es kam jedoch zu verspäteteten Abgaben.
„Das verhängte Bußgeld liegt unter der Höhe der Rückstellung“
Ganze 9,2 Millionen Euro muss die Neobank diesmal zahlen. Sie hat dafür aber vorgesorgt, wie aus einem Statement des FinTechs hervorgeht: „Das Unternehmen hat in Bezug auf das Bußgeld bereits im Jahr 2022 eine entsprechende Rückstellung gebildet, das verhängte Bußgeld liegt unter der Höhe der Rückstellung.“
Mehr als 80 Millionen Euro von N26 seit 2022 in Verbesserungen investiert
Einmal mehr wird in diesem Statement auch betont: „Seit 2022 hat N26 zahlreiche Maßnahmen zur Verbesserung der Meldeprozesse implementiert und mehr als 80 Millionen Euro in die personelle und technische Infrastruktur investiert, um höchste Branchenstandards bei der effektiveren Bekämpfung von Finanzkriminalität und Geldwäsche einzuhalten.“ Man habe eine „enge und vertrauensvolle Zusammenarbeit mit den Aufsichtsbehörden“.
Quantenelektronenoptik made in Austria: Das Haslinger Lab zoomt bis zum Atom
Einzelne Atome lassen sich mit moderner Elektronenmikroskopie zwar schon seit langer Zeit abbilden. Doch ihre Quanteneigenschaften, insbesondere der Spin, können bislang nicht direkt beobachtet werden. Die Forschungsgruppe um Professor Philipp Haslinger an der TU Wien arbeitet daran, das zu ändern – mit dem Ziel, eine Art „Magnetresonanztomografie im Nanomaßstab“ zu entwickeln, die Spin-Informationen sichtbar macht. Die dafür notwendigen Technologien finden sich auch auf der "Innovation Map" der Wirtschaftskammer Österreich (WKÖ).
Quantenelektronenoptik made in Austria: Das Haslinger Lab zoomt bis zum Atom
Einzelne Atome lassen sich mit moderner Elektronenmikroskopie zwar schon seit langer Zeit abbilden. Doch ihre Quanteneigenschaften, insbesondere der Spin, können bislang nicht direkt beobachtet werden. Die Forschungsgruppe um Professor Philipp Haslinger an der TU Wien arbeitet daran, das zu ändern – mit dem Ziel, eine Art „Magnetresonanztomografie im Nanomaßstab“ zu entwickeln, die Spin-Informationen sichtbar macht. Die dafür notwendigen Technologien finden sich auch auf der "Innovation Map" der Wirtschaftskammer Österreich (WKÖ).
vl.: Michael Seifner, Antonín Jaroš und Philipp Haslinger | Foto: Philipp Haslinger
0,045 Nanometer – das ist aktuell die Auflösungsgrenze der leistungsstärksten Transmissionselektronenmikroskope. Ein großes Virus mit bis zu 150 Nanometern Durchmesser kann man damit schon recht gut erkennen, aber wenn es um die Untersuchung von einem DNA-Strang mit rund 2,5 Nanometer Durchmesser geht, sieht man nicht mehr viel – und das obwohl man im Prinzip einzelne Atome mit etwa 0,1 Nanometer Durchmesser sehen kann. Das Problem ist, dass der Elektronenstrahl die biologischen Bindungen, die die Atome zusammenhalten, zerstört.
Zukunftstechnologie Quantenoptik
Hier kommen der TU-Wien-Professor Philipp Haslinger und sein Team ins Spiel. „Mit klassischer Elektronenmikroskopie stößt man irgendwann an die Grenzen. Zudem werden organische Samples wie etwa Viren durch die Elektronenstrahlen zerstört“, erklärt Haslinger im Gespräch mit brutkasten. Seine Antwort: Quantenoptik – übrigens eine von 105 Zukunftstechnologien, die sich auf der neuen Innovation Map der WKÖ finden.
Genauer und „zerstörungsfrei“
Konkret ist es Quantenelektronenoptik, an der Haslinger und sein Team arbeiten. Dabei kombinieren sie zwei Technologien: Das Elektronenmikroskop (konkret: Transmissionselektronenmikroskopie) und die Spinresonanzspektroskopie, die aus der Magnetresonanztomografie (MRT) bekannt ist. “MRT ist eine nicht-invasive, also zerstörungsfreie Methode“, erläutert Haslinger. „Unsere Vision ist es, diese Idee auf die Nanowelt zu übertragen und damit kleinste Objekte sichtbar zu machen. Damit könnte man beispielsweise Protein-Strukturen auslesen, ohne sie zu beschädigen.“
Ungeahnte Möglichkeiten
Das ist aber nur eine von vielen potenziellen Anwendungsmöglichkeiten. Auch für die Materialforschung oder Energiespeichertechnologien könnte die Methode neue Perspektiven eröffnen. „Wir wissen heute noch gar nicht, welche Türen sich damit öffnen werden“, sagt Haslinger. „Im Grunde verleihen wir der Elektronenmikroskopie eine neue Charakterisierungmöglichkeit, eine neue Farbe. Sie liefert dann Informationen, die bisher unsichtbar waren. Das kann zu vielen neuen Erkenntnissen führen.“
Es sei vergleichbar mit dem Erkenntnisgewinn, den MRT gegenüber klassischer Computertomografie auf Röntgenbasis bringe: „Man sieht Dinge, die man vorher nicht gesehen hat“, so Haslinger, „als der erste Computer gebaut wurde, war auch noch nicht klar, dass einmal das Internet und später Künstliche Intelligenz folgen würden.“
„Können schon jetzt Dinge machen, die vorher nicht möglich waren“
Noch ist die Forschungsgruppe aber nicht am Ziel. „Mit unserem Prototypen können wir schon jetzt Dinge machen, die vorher nicht möglich waren, etwa die quantenmechanischen Eigenschaften von mikroskopischen Objekten mit dem Elektronenstrahl vermessen“, sagt der Forscher. Die angestrebte atomare Auflösung habe man aber noch nicht erreicht. Dafür brauche es weitere Prototypen, für die erst kürzlich unter anderem eine Förderung im Rahmen des Programms „Transfer.Science to Spin-off“ der „Christian Doppler Forschungsgesellschaft“ eingeworben wurde – brutkasten berichtete.
Antonín Jaroš am Prototyp im Labor der Forschungsgruppe | Foto: Philipp Haslinger
Diese Förderung schaffe Raum dafür, weiterzuforschen und gleichzeitig bereits an einer Spin-off-Ausgründung zu arbeiten, sagt Haslinger. Denn er forscht nicht alleine, sondern mit einem starken Team: Antonín Jaroš (PhD-Student) und Michael Seifner (PostDoc) sollen weiter die Möglichkeit haben, auch wissenschaftlich auf hohem Niveau zu arbeiten. Dennoch soll bereits in zwei bis drei Jahren gegründet werden – hierbei wird Haslingers Team auch mit den neu geschaffenen Spin-off-Strukturen innerhalb der TU Wien, zu denen unter anderem Noctua Science Ventures (brutkasten berichtete) zählt, unterstützt.
Mikroskopie als Milliardenmarkt
Und für die Zukunft gibt es durchaus große Pläne. „Elektronenmikroskopie ist ein Milliarden-Dollar-Markt mit weltweit zehntausenden Geräten – jedes große Krankenhaus, wie zum Beispiel das Wiener AKH, hat so ein Gerät“, sagt Haslinger. Und er gehe davon aus, dass die von seinem Team entwickelte Technologie in Zukunft neue Anwendungen in dem Bereich ermöglichen wird. „Es gibt jetzt schon mehrere Gruppen, die unser Produkt für die Forschung haben wollen“, so der Wissenschaftler.
Mit dem nächsten Prototypen werde man dann bereits erste Kooperationen umsetzen können. Und in weiterer Folge soll in einigen Jahren der Rollout der Technologie folgen. Ob man dann selber die Technologie herstellen werde, oder Lizenzen an Partner vergeben werde, sei aktuell aber noch nicht klar, so Haslinger. „Erst einmal müssen wir sehen, wie gut die nächsten Prototypen wirklich funktionieren und wie groß das Interesse dann tatsächlich ist.“
Entdecke die Innovation Map
Die Forschung von Philipp Haslinger und seinem Team steht exemplarisch für die Innovationskraft, die an Österreichs Universitäten steckt – und dafür, wie wissenschaftliche Erkenntnisse Schritt für Schritt ihren Weg in die Anwendung finden. Technologien wie die Quantenelektronenoptik zeigen, dass der nächste große Durchbruch oft dort entsteht, wo Grundlagenforschung auf Unternehmergeist trifft.
Wer mehr solcher Zukunftsprojekte kennenlernen möchte – von neuen Energiespeicherlösungen über MedTech-Innovationen bis zu Quantentechnologien – findet auf der „Innovation Map“ der Wirtschaftskammer Österreich einen Überblick über mehr als 100 Forschungs- und Entwicklungsvorhaben. Die interaktive Plattform macht sichtbar, wo bereits heute an der Zukunft gearbeitet wird – und lädt dazu ein, selbst einzutauchen in die Welt der Innovation.
👉 Jetzt entdecken, welche Technologien Österreichs Innovationslandschaft prägen: innovationmap.at
Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.