16.07.2020

Auch Künstliche Intelligenz kann menschliche Schwächen haben

Algorithmen erkennen Sarkasmus, aber sie können vergessen – zwei Themen, denen sich Wissenschaftlerinnen des Software Competence Center Hagenberg in ihren Forschungsarbeiten widmen.
/artikel/kunstliche-intelligenz-menschliche-schwachen
Künstliche Intelligenz hat in Österreich keinen hohen Stellenwert.
Künstliche Intelligenz hat in Österreich keinen hohen Stellenwert. (c) Adobe Stock / metamorworks
sponsored

Das Erkennen von Sarkasmus im Web ist sogar für Menschen ein schwieriges Unterfangen – für eine künstliche Intelligenz ist es umso komplizierter. Dabei wäre dies etwa im Onlinehandel wichtig, damit zum Beispiel eine Onlinerezension richtig eingeschätzt werden kann. Bisherige Sarkasmusdetektionen fokussieren sich auf die Erkennung von Sarkasmus auf Satzebene oder für eine spezielle Textphrase. Das Problem dabei ist, dass es oft unmöglich ist, einen einzelnen sarkastischen Satz zu identifizieren, ohne den Kontext zu kennen.

(c) SCCH

Diesem Thema widmet sich Nicole Schwarz vom Software Competence Center Hagenberg (SCCH) in ihrer Arbeit. „Ich arbeite dabei mit einem Deep Neural Network, das jeweils ein Convolutional Neural Network und ein Long-Short-Term Memory Network umfasst“, so Schwarz. Beide Methoden können Texte effizient klassifizieren, die vom Kontext des jeweiligen Textes abhängen, da beide über Speichereinheiten verfügen, um sich bereits gelernte Wörter aus dem Text merken zu können.

Die Ergebnisse der Arbeit zeigen somit, dass Deep Neural Networks die Genauigkeit simplerer Modelle übertreffen können – allerdings mit einem Wermutstropfen: Gäbe es mehr und bessere Daten, so könnten auch genauere Resultate erzielt werden.

Auch eine Künstliche Intelligenz kann vergessen

(c) SCCH

Daten sind zugleich das Thema, dem sich Sabrina Luftensteiner in ihrer Arbeit widmet. Denn Vergessen ist kein menschliches Privileg, wie sie erklärt: Auch bei Maschinen ist das sogenannte „katastrophale Vergessen“ ein Problem.

„Ich erforsche das katastrophale Vergessen, welches beim Online-Learning von neuronalen Netzen auftritt und wodurch gelernte Zusammenhänge in bestehenden Modellen bei der Anpassung mit neuen Daten verdrängt werden“, sagt Luftensteiner. Ein Modell komplett neu zu erstellen ist zum Beispiel in der Industrie aber oft zu aufwendig oder gar nicht möglich – etwa wegen des Überschreitens zeitlicher Limits oder auch, weil hier benötigte Daten fehlen.

In diesem Kontext sind auch zensurierte Daten ein Problem: Diese entstehen zum Beispiel durch physikalische Grenzen von Sensoren (z.B. Hitzesensoren) – sie führen zu einem verfälschten Modell, da die im Training genutzten Daten nicht den realen Daten entsprechen. „Ich habe daher ein Framework entwickelt, welches diese Ansätze einbindet und auf verschiedene Datensätze anwendbar ist. Durch die diversen Konfigurationsmöglichkeiten ist dieses Framework gegen das Vergessen in diversen Bereichen – vor allem aber in der Industrie – anwendbar“, so Luftensteiner.

Deine ungelesenen Artikel:
17.05.2024

Tech-Lösungen fürs Unternehmen: Synergien statt Silos

Auf dem Weltmarkt sind sie Konkurrenten. Bei der Deloitte Technology Alliance Fair am 27. Mai kommen viele der weltweit wichtigsten Technologie-Anbieter zusammen. Deloitte Partner Mohamed Omran sprach mit brutkasten über die Hintergründe und Ziele.
/artikel/deloitte-technology-alliance-fair
17.05.2024

Tech-Lösungen fürs Unternehmen: Synergien statt Silos

Auf dem Weltmarkt sind sie Konkurrenten. Bei der Deloitte Technology Alliance Fair am 27. Mai kommen viele der weltweit wichtigsten Technologie-Anbieter zusammen. Deloitte Partner Mohamed Omran sprach mit brutkasten über die Hintergründe und Ziele.
/artikel/deloitte-technology-alliance-fair
Synergien stehen bei der Deloitte Technology Alliance Fair im Mittelpunkt | (c) Adobe Stock
Synergien stehen bei der Deloitte Technology Alliance Fair im Mittelpunkt | (c) Adobe Stock

Was bringt SAP, IBM, Oracle NetSuite, Salesforce und ServiceNow zusammen auf ein Event? Schließlich haben die globalen Technologie-Riesen auf dem Markt teilweise konkurrierende Produkte. “Als wir sie für die Technology Alliance Fair angefragt haben, waren einige vom Konzept zunächst durchaus überrascht. Nach kurzer Zeit waren aber alle begeistert”, erzählt Deloitte Partner Mohamed Omran im Gespräch mit brutkasten.

Deloitte Technology Alliance Fair
Wann: 27.05.2024 ab 12:30
Wo: Wien Museum, Karlsplatz 8, 1040 Wien

“Synergie-Effekt kann sehr viel Mehrwert schaffen”

Denn die besagten Unternehmen und noch viele mehr sind Partner bzw. “Alliances” von Deloitte Österreich. Auf der Technology Alliance Fair am 27. Mai wolle man unter anderem zeigen, welche Vorteile Synergien zwischen den Produkten der Anbieter für Kunden haben können, sagt Omran: “Unternehmen bilden häufig Silos und setzen in Bereichen wie CRM, ERP oder Service Management voneinander unabhängige Prozesse auf. Dabei kann ein Synergie-Effekt hier sehr viel Mehrwert schaffen. Ziel ist, dass sie beim Event mit einem Aha-Effekt herauskommen.”

Gezielte Unterstützung bei der digitalen Transformation

Dazu haben die Partner-Unternehmen auf der Technology Alliance Fair die Möglichkeit, dem Publikum ihre Lösungen vorzustellen. In mehreren Sessions und Pitches werden Best Practices, Success Stories und die aktuellsten Innovationen präsentiert, die Ihr Unternehmen gezielt bei der digitalen Transformation und Themen wie Cloud, AI, ESG, Arbeitskräftemangel und Technologiewandel unterstützen sollen.

“Wir sind diejenigen, die alles zusammenführen”

“Und wir sind diejenigen, die alles zusammenführen, die eine End-to-End-Brücke zwischen den Lösungen bilden”, erklärt der Deloitte Partner. Die “Alliances” würden dabei die Ankerthemen darstellen. “Dazwischen gibt es viele organisatorische und strategische Angebote von uns, etwa in den Bereichen Change Management oder Product Management. Diese zusätzlichen Leistungen, die wir neben einem Implementierungsprojekt anbieten können, bringen unserer Expertise nochmal einen besonderen Mehrwert”, so Omran.

Das passiert auf der Technology Alliance Fair

Neben je 30-minütigen Präsentationen von SAP, IBM, Oracle NetSuite, Salesforce und ServiceNow sind auf der Technology Alliance Fair auch Pitches der Deloitte-“Alliances” Parloa, Palo Alto Networks, Adobe, Integration Services und Informatica zu sehen. Eine Podiumsdiskussion mit Vertreter:innen aus der Wirtschaft beschäftigt sich mit den Fragen: Welche Rahmenbedingungen braucht es, damit Digitale & Workforce-Transformation im Unternehmen gelingen? Und welche Rolle spielt dabei AI? Beim Ausklang danach gibt es ausgiebig Gelegenheit zum Networking.

Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag

AI Summaries

Auch Künstliche Intelligenz kann menschliche Schwächen haben

  • Das Erkennen von Sarkasmus im Web ist sogar für Menschen ein schwieriges Unterfangen – für eine künstliche Intelligenz ist es umso komplizierter.
  • Diesem Thema widmet sich Nicole Schwarz vom Software Competence Center Hagenberg (SCCH) in ihrer Arbeit.
  • “Ich arbeite dabei mit einem Deep Neural Network, das jeweils ein Convolutional Neural Network und ein Long-Short-Term Memory Network umfasst”, so Schwarz.
  • Daten sind zugleich das Thema, dem sich Sabrina Luftensteiner in ihrer Arbeit widmet.
  • Denn Vergessen ist kein menschliches Privileg, wie sie erklärt: Auch bei Maschinen ist das sogenannte “katastrophale Vergessen” ein Problem.
  • In diesem Kontext sind auch zensurierte Daten ein Problem: Diese entstehen zum Beispiel durch physikalische Grenzen von Sensoren – sie führen zu einem verfälschten Modell, da die im Training genutzten Daten nicht den realen Daten entsprechen.

AI Kontextualisierung

Welche gesellschaftspolitischen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Auch Künstliche Intelligenz kann menschliche Schwächen haben

  • Das Erkennen von Sarkasmus im Web ist sogar für Menschen ein schwieriges Unterfangen – für eine künstliche Intelligenz ist es umso komplizierter.
  • Diesem Thema widmet sich Nicole Schwarz vom Software Competence Center Hagenberg (SCCH) in ihrer Arbeit.
  • “Ich arbeite dabei mit einem Deep Neural Network, das jeweils ein Convolutional Neural Network und ein Long-Short-Term Memory Network umfasst”, so Schwarz.
  • Daten sind zugleich das Thema, dem sich Sabrina Luftensteiner in ihrer Arbeit widmet.
  • Denn Vergessen ist kein menschliches Privileg, wie sie erklärt: Auch bei Maschinen ist das sogenannte “katastrophale Vergessen” ein Problem.
  • In diesem Kontext sind auch zensurierte Daten ein Problem: Diese entstehen zum Beispiel durch physikalische Grenzen von Sensoren – sie führen zu einem verfälschten Modell, da die im Training genutzten Daten nicht den realen Daten entsprechen.

AI Kontextualisierung

Welche wirtschaftlichen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Auch Künstliche Intelligenz kann menschliche Schwächen haben

  • Das Erkennen von Sarkasmus im Web ist sogar für Menschen ein schwieriges Unterfangen – für eine künstliche Intelligenz ist es umso komplizierter.
  • Diesem Thema widmet sich Nicole Schwarz vom Software Competence Center Hagenberg (SCCH) in ihrer Arbeit.
  • “Ich arbeite dabei mit einem Deep Neural Network, das jeweils ein Convolutional Neural Network und ein Long-Short-Term Memory Network umfasst”, so Schwarz.
  • Daten sind zugleich das Thema, dem sich Sabrina Luftensteiner in ihrer Arbeit widmet.
  • Denn Vergessen ist kein menschliches Privileg, wie sie erklärt: Auch bei Maschinen ist das sogenannte “katastrophale Vergessen” ein Problem.
  • In diesem Kontext sind auch zensurierte Daten ein Problem: Diese entstehen zum Beispiel durch physikalische Grenzen von Sensoren – sie führen zu einem verfälschten Modell, da die im Training genutzten Daten nicht den realen Daten entsprechen.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Innovationsmanager:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Auch Künstliche Intelligenz kann menschliche Schwächen haben

  • Das Erkennen von Sarkasmus im Web ist sogar für Menschen ein schwieriges Unterfangen – für eine künstliche Intelligenz ist es umso komplizierter.
  • Diesem Thema widmet sich Nicole Schwarz vom Software Competence Center Hagenberg (SCCH) in ihrer Arbeit.
  • “Ich arbeite dabei mit einem Deep Neural Network, das jeweils ein Convolutional Neural Network und ein Long-Short-Term Memory Network umfasst”, so Schwarz.
  • Daten sind zugleich das Thema, dem sich Sabrina Luftensteiner in ihrer Arbeit widmet.
  • Denn Vergessen ist kein menschliches Privileg, wie sie erklärt: Auch bei Maschinen ist das sogenannte “katastrophale Vergessen” ein Problem.
  • In diesem Kontext sind auch zensurierte Daten ein Problem: Diese entstehen zum Beispiel durch physikalische Grenzen von Sensoren – sie führen zu einem verfälschten Modell, da die im Training genutzten Daten nicht den realen Daten entsprechen.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Investor:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Auch Künstliche Intelligenz kann menschliche Schwächen haben

  • Das Erkennen von Sarkasmus im Web ist sogar für Menschen ein schwieriges Unterfangen – für eine künstliche Intelligenz ist es umso komplizierter.
  • Diesem Thema widmet sich Nicole Schwarz vom Software Competence Center Hagenberg (SCCH) in ihrer Arbeit.
  • “Ich arbeite dabei mit einem Deep Neural Network, das jeweils ein Convolutional Neural Network und ein Long-Short-Term Memory Network umfasst”, so Schwarz.
  • Daten sind zugleich das Thema, dem sich Sabrina Luftensteiner in ihrer Arbeit widmet.
  • Denn Vergessen ist kein menschliches Privileg, wie sie erklärt: Auch bei Maschinen ist das sogenannte “katastrophale Vergessen” ein Problem.
  • In diesem Kontext sind auch zensurierte Daten ein Problem: Diese entstehen zum Beispiel durch physikalische Grenzen von Sensoren – sie führen zu einem verfälschten Modell, da die im Training genutzten Daten nicht den realen Daten entsprechen.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Politiker:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Auch Künstliche Intelligenz kann menschliche Schwächen haben

  • Das Erkennen von Sarkasmus im Web ist sogar für Menschen ein schwieriges Unterfangen – für eine künstliche Intelligenz ist es umso komplizierter.
  • Diesem Thema widmet sich Nicole Schwarz vom Software Competence Center Hagenberg (SCCH) in ihrer Arbeit.
  • “Ich arbeite dabei mit einem Deep Neural Network, das jeweils ein Convolutional Neural Network und ein Long-Short-Term Memory Network umfasst”, so Schwarz.
  • Daten sind zugleich das Thema, dem sich Sabrina Luftensteiner in ihrer Arbeit widmet.
  • Denn Vergessen ist kein menschliches Privileg, wie sie erklärt: Auch bei Maschinen ist das sogenannte “katastrophale Vergessen” ein Problem.
  • In diesem Kontext sind auch zensurierte Daten ein Problem: Diese entstehen zum Beispiel durch physikalische Grenzen von Sensoren – sie führen zu einem verfälschten Modell, da die im Training genutzten Daten nicht den realen Daten entsprechen.

AI Kontextualisierung

Was könnte das Bigger Picture von den Inhalten dieses Artikels sein?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Auch Künstliche Intelligenz kann menschliche Schwächen haben

  • Das Erkennen von Sarkasmus im Web ist sogar für Menschen ein schwieriges Unterfangen – für eine künstliche Intelligenz ist es umso komplizierter.
  • Diesem Thema widmet sich Nicole Schwarz vom Software Competence Center Hagenberg (SCCH) in ihrer Arbeit.
  • “Ich arbeite dabei mit einem Deep Neural Network, das jeweils ein Convolutional Neural Network und ein Long-Short-Term Memory Network umfasst”, so Schwarz.
  • Daten sind zugleich das Thema, dem sich Sabrina Luftensteiner in ihrer Arbeit widmet.
  • Denn Vergessen ist kein menschliches Privileg, wie sie erklärt: Auch bei Maschinen ist das sogenannte “katastrophale Vergessen” ein Problem.
  • In diesem Kontext sind auch zensurierte Daten ein Problem: Diese entstehen zum Beispiel durch physikalische Grenzen von Sensoren – sie führen zu einem verfälschten Modell, da die im Training genutzten Daten nicht den realen Daten entsprechen.

AI Kontextualisierung

Wer sind die relevantesten Personen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Auch Künstliche Intelligenz kann menschliche Schwächen haben

  • Das Erkennen von Sarkasmus im Web ist sogar für Menschen ein schwieriges Unterfangen – für eine künstliche Intelligenz ist es umso komplizierter.
  • Diesem Thema widmet sich Nicole Schwarz vom Software Competence Center Hagenberg (SCCH) in ihrer Arbeit.
  • “Ich arbeite dabei mit einem Deep Neural Network, das jeweils ein Convolutional Neural Network und ein Long-Short-Term Memory Network umfasst”, so Schwarz.
  • Daten sind zugleich das Thema, dem sich Sabrina Luftensteiner in ihrer Arbeit widmet.
  • Denn Vergessen ist kein menschliches Privileg, wie sie erklärt: Auch bei Maschinen ist das sogenannte “katastrophale Vergessen” ein Problem.
  • In diesem Kontext sind auch zensurierte Daten ein Problem: Diese entstehen zum Beispiel durch physikalische Grenzen von Sensoren – sie führen zu einem verfälschten Modell, da die im Training genutzten Daten nicht den realen Daten entsprechen.

AI Kontextualisierung

Wer sind die relevantesten Organisationen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Auch Künstliche Intelligenz kann menschliche Schwächen haben

  • Das Erkennen von Sarkasmus im Web ist sogar für Menschen ein schwieriges Unterfangen – für eine künstliche Intelligenz ist es umso komplizierter.
  • Diesem Thema widmet sich Nicole Schwarz vom Software Competence Center Hagenberg (SCCH) in ihrer Arbeit.
  • “Ich arbeite dabei mit einem Deep Neural Network, das jeweils ein Convolutional Neural Network und ein Long-Short-Term Memory Network umfasst”, so Schwarz.
  • Daten sind zugleich das Thema, dem sich Sabrina Luftensteiner in ihrer Arbeit widmet.
  • Denn Vergessen ist kein menschliches Privileg, wie sie erklärt: Auch bei Maschinen ist das sogenannte “katastrophale Vergessen” ein Problem.
  • In diesem Kontext sind auch zensurierte Daten ein Problem: Diese entstehen zum Beispiel durch physikalische Grenzen von Sensoren – sie führen zu einem verfälschten Modell, da die im Training genutzten Daten nicht den realen Daten entsprechen.