20.03.2020

Autonomous vehicles: AVL optimizes object recognition in AI

The future of driving is autonomous… But until vehicles reach human-level driving capabilities, AI still has to learn a few things. The Graz-based company AVL is tackling some of these challenges together with the Silicon Valley based technology provider Deepen.AI.
/artikel/deepen-ai-avl
AVL trainiert die AI mit Deepen AI
(c) Adobe Stock / Monopoly919
sponsored

Simply leaning back instead of having to pay attention to traffic: That is the vision of autonomous driving. This is intended not only to make traveling more pleasant for the passengers, but also to make it safer than having one person at the steering wheel, when distractions and human errors are the leading cause of fatalities. Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.

+++How software helps to reduce human driving errors+++

This process takes place in several stages. In the first phase, the object detection must determine where an object is located at all. In the second step, a detected object is then classified: It is determined whether it is, for example, a vehicle, an adult, a child or an animal – because a child behaves differently from an adult, for example. Finally, the system must carry out the so-called “tracking”. This involves analyzing where the object was in the past and where it is now – in order to draw conclusions about where the object will probably be next.

Separating the data wheat from the data chaff

Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car. These sensors produce countless amounts of data – and it is precisely this data that must be correctly classified so that the AI can identify which part of it is relevant to safety and which is not.

This is where the Silicon-Valley company Deepen.AI comes into play. Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz. First results of this cooperation were presented at the CES 2020 in Las Vegas.

PoC with AVL for the future of autonomous driving

Deepen.AI, founded by three former Google employees, is about the aforementioned challenge of providing ADSs a correct understanding of the world surrounding them. To achieve this, AI needs some human help in order to be effectively trained to make correct inferences. That’s why, in addition to its 17 full-time employees, Deepen.AI works with around 250 people in India who clean up the data collected by the sensors and teach AI to recognize things: For example, they mark when the AI has overlooked a side mirror on a car or misclassified objects. “These data analysts clear up doubts that the AI has about some objects,” explains Mohammad Musa, Co-Founder and CEO of Deepen.AI: “They help with classification and calibration.”

This very deep focus on data integrity is also the context of the PoC developed jointly with AVL. “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL. Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

 “Safety Pool” as next step after PoC

“Together” is also the keyword behind the joint goal that the partners want to pursue after the successful PoC. One big challenge affecting the industry is that the various car manufacturers are currently pursuing different paths, each one using its own proprietary approach. “But the industry needs standards,” says Musa: “That is the basis for everyone to trust the safety of the systems.”

Therefore, “Safety Pool™, (www.safetypool.ai) a project led by Deepen and the World Economic Forum, has the goal to define quantified benchmarks and uniform descriptions of driving situations, which will then serve not only as standards for the industry, but also as a solid backbone to derive consensus-driven safety assessments and frame regulations. This will bring society one significant step closer to benefitting from the revolutionary capabilities of automated driving technologies.

Video-Talk with AVL and Deepen AI

==> Deepen AI

==> AVL Creators Expedition

Redaktionstipps
Deine ungelesenen Artikel:
15.11.2024

BergWind Energy: OÖ-Startup nutzt Seilbahnen für Windkrafterzeugung

Nach einer erfolgreichen Testphase bringt das oberösterreichische Startup BergWind Energy nun seine Kleinwindanlagen auf den Markt. Ab dem 1. Jänner 2025 sind die neuen Produkte erhältlich.
/artikel/bergwind-energy-ooe-startup-nutzt-seilbahnen-fuer-windkrafterzeugung
15.11.2024

BergWind Energy: OÖ-Startup nutzt Seilbahnen für Windkrafterzeugung

Nach einer erfolgreichen Testphase bringt das oberösterreichische Startup BergWind Energy nun seine Kleinwindanlagen auf den Markt. Ab dem 1. Jänner 2025 sind die neuen Produkte erhältlich.
/artikel/bergwind-energy-ooe-startup-nutzt-seilbahnen-fuer-windkrafterzeugung
CEO Ibrahim Sagerer-Foric (c) BergWind Energy

Ob Wasserkraft, Windkraft oder Solarenergie: Erneuerbare Energien spielen in unserer Zeit eine zunehmend wichtige Rolle. Angesichts der Klimakrise entwickeln Startups vermehrt neue Technologien, die auf eine nachhaltigere Zukunft abzielen.

Auch das oberösterreichische Startup BergWind Energy will mit seinen neuen Produkten zur nachhaltigen Energieversorgung beitragen. Es bietet Kleinwindanlagen an, die an Seilbahnen, Brücken oder anderen Infrastrukturen installiert werden können. Darüber hinaus fungiert eine Werbefläche auf den Anlagen als eine umweltfreundliche Werbemöglichkeit für Unternehmen.

BergWind-Anlagen seien eine “umweltfreundliche und wirtschaftlich attraktive Energiequelle”

Ab dem kommenden Jahr werden die neuen Produkte „BergWind 2000“ und „Powerflag“ verfügbar sein. Die Kleinwindturbine „BergWind 2000“ ist speziell für den Einsatz in Bergregionen, insbesondere in Skigebieten, konzipiert. Sie wird an Seilbahnen oder Brücken installiert, um die Vorteile der Höhenlagen optimal zu nutzen und bestehende Infrastrukturen einzubinden. So soll laut Unternehmen kein zusätzlicher Boden versiegelt werden. Darüber hinaus ist die Anlage mit einer Werbefahne ausgestattet, die Unternehmen als nachhaltige Werbefläche nutzen können.

Laut BergWind Energy kann jede Turbine bei einer Leistung von 2.000 Watt je nach Standort jährlich zwischen 1.500 und 2.500 kWh erzeugen. Auch bei Nacht und bewölktem Wetter bleibt die Energieproduktion laut Produktversprechen konstant. Das soll speziell für Skigebiete und Seilbahnbetreiber eine “umweltfreundliche und wirtschaftlich attraktive Energiequelle” darstellen.

Keine Bodenversiegelung durch Kleinwindturbinen

Die „Powerflag“ ist eine Windfahne, die traditionelle Fahnenmasten ersetzen soll. Die Fahnenfläche dient gleichzeitig als Rotorblatt, das den Wind einfängt und in Energie umwandelt. Zusätzlich bietet sie durch die Platzierung entlang von Straßen eine Werbefläche für Unternehmen. Durch die kompakte Größe und den flexiblen Standfuß kann die Powerflag ebenso auf Dächern oder auf Freiflächen installiert werden. Wie bei der Kleinwindturbine ist für die Installation der Powerflag keine Bodenversiegelung nötig, was CO2-Emissionen und Materialkosten einspart.

Das Besondere an den neuen Produkten liege in der Kombination von Energiegewinnung und Marketing: “Unternehmen können ihre bestehende Infrastruktur optimal nutzen und gleichzeitig nachhaltige Energie erzeugen”, so das Produktversprechen.

Energieerzeugung mit Marketing in einem Produkt

Das GreenTech-Startup wurde von CEO Ibrahim Sagerer-Foric und Co-Founder Nedeljko Milosevic ins Leben gerufen. Seit Jänner 2023 verfolgt das Unternehmen die Vision, Energieerzeugung mit Bergsport und Marketing in einem Produkt zu vereinen.

Zu seinen Kooperationspartnern zählen Unternehmen wie FE Business Parks, Kukla Waagenfabrik und Hypo Bank Immobilien und Leasing Vorarlberg. Darüber hinaus wird das Startup durch Förderprogramme unterstützt, darunter das Greenstart-Programm, bei dem BergWind im letzten Jahr zu den zehn Finalisten gehörte – brutkasten berichtete. Zudem finanziert sich BergWind zum Teil durch Dienstleistungen in Form von Innovationsworkshops, Produktentwicklung und Patenterstellung.

BergWind plant europaweites Wachstum

Mit dem offiziellen Marktstart im kommenden Jahr plant BergWind, europaweit zu wachsen. CEO Sagerer-Foric erklärt im Gespräch mit brutkasten, dass der Fokus des Startups zukünftig auf dem weiteren Ausbau liegen wird. Bereits jetzt zählen ein Skigebiet in Schweden, Salzburg und Kärnten sowie Unternehmen in Bayern und der Schweiz zum Kundenportfolio.

Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag

AI Summaries

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Welche gesellschaftspolitischen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Welche wirtschaftlichen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Innovationsmanager:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Investor:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Politiker:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Was könnte das Bigger Picture von den Inhalten dieses Artikels sein?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Wer sind die relevantesten Personen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.

AI Kontextualisierung

Wer sind die relevantesten Organisationen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonomous vehicles: AVL optimizes object recognition in AI

  • Clearly, in order to successfully tackle the driving task, Autonomous Driving  Systems (ADS) must be able to recognize objects, assess situations correctly, and master driving skills.
  • Self-driving cars use data from various sensors installed in the vehicle – such as cameras or LiDAR sensors, which measure the distance between the objects and the car.
  • Deepen has developed technology for better detection and segmentation of object data in road traffic in cooperation with AVL, based in Graz.
  • “It is important for AVL to have correctly annotated data at pixel and point level,” explains Thomas Schlömicher, Research Engineer ADAS at AVL.
  • Ideally, the cooperation should result in a complete “Data Intelligence Pipeline”, which will be used by AVL’s numerous B2B customers to annotate their data and thus jointly shape the future capabilities of autonomous driving.