10.05.2021

Wie Big Data Planwirtschaft und Kapitalismus zusammenbringt

In seiner aktuellen Kolumne beschäftigt sich Mic Hirschbrich damit, wie Technologie einen alten ökonomischen Widerspruch aufhebt.
/artikel/big-data-planwirtschaft-und-kapitalismus
Wie Big Data Planwirtschaft und Kommunismus zusammenbringt
brutkasten-Kolumnist Mic Hirschbrich | Hintergrund: (c) Adobe Stock / karsty

Im 20. Jahrhundert fand die Teilung der Welt in zwei Systeme statt. Länder waren entweder liberal-demokratisch und mit freien Märkten oder kommunistisch bzw. sozialistisch und mit zentraler, planwirtschaftlicher Organisation. In der westlichen Welt wollte man Individuen und deren Eigenverantwortung stärken, im Osten die Menschen materiell gleichstellen. Im “American Dream” sollte jeder, der sich nur hart genug anstrengte, reich werden können. Das erreichten zwar viele nicht, aber immerhin konnte sich im Kapitalismus eine starke Mittelschicht etablieren. Im Sozialismus hingegen blieben am Ende die meisten statt gleich reich, gleich arm. Wir sehen uns gleich an, weshalb.

Man gehörte zur NATO oder zum Warschauer Pakt, stand auf Seite der USA oder jener der Sowjetunion. China zählte ebenso zur kommunistischen Hälfte, allerdings mit einer eigenen Variante. Bipolar war die Welt nach dem zweiten Weltkrieg, aber auch leichter erklärbar hinsichtlich ihrer politischen und ökonomischen Systeme und Unterschiede.

Die Welt heute ist komplexer geworden und alte als fest geltende Regeln, scheinen nicht mehr gültig zu sein.

Zum Jahrestag Hayeks: Das Ökonomie-Genie hielt einen „sozialistischen Kapitalismus“ für denkunmöglich

Bevor der Nobelpreisträger Friedrich August von Hayek (geb. 8.5.1899) zum Wirtschaftsliberalen wurde, war er jugendlicher Pazifist und Anhänger einer planwirtschaftlichen Ordnung. Er beschäftigte sich eingehend mit Ideen zum demokratischen Sozialismus. Später wurde er aber für sein Wirken als Liberaler und Mitglied der Österreichischen Schule der Nationalökonomie bekannt und in verschiedensten Ländern und Organisationen als beratender Ökonom geschätzt. Sein wissenschaftliches Leben war reich an komplexen Diskursen, mit denen sich kundige Wirtschaftshistoriker und Ökonomen bis heute beschäftigen.

Ich bin kein Ökonom, doch neben seiner Forderung nach einem “bedingungslosen Grundeinkommen abseits von Marktregeln”, war eine Einschätzung Hayeks für mich als Technologen spannend: Planwirtschaft und Kapitalismus gingen in seiner Welt “niemals zusammen”. Doch Hayek hatte keine Vorstellung von moderner Daten-Ökonomie.

Das Informations-Problem im Sozialismus – vor Big-Data

Der SPÖ-nahe ORF-Journalist Franz Kreuzer fragte Hayek vor bald 40 Jahren in einem noch heute bemerkenswerten Interview (bei Minute 30:48), weshalb eine Gesellschaft mit vielen kleinen Egoisten besser funktionieren solle, als eine zentral geleitete und von höheren moralischen Zielen getragene. Und Hayek antwortete weniger ideologisch als vielmehr nüchtern analytisch: Eine von oben erzeugte “Ordnung der Gesellschaft” setze ein Ausmaß an Kenntnissen voraus, welches kein Mensch besitzen könne. Und er konkretisierte: “(…) während der idealistische (zentrale, Anm.) Planer, der das alles seinen Idealen entsprechend gestalten will, das Wissen (um die Daten, Anm.), das er dazu braucht, nicht besitzt und nicht besitzen kann”. Die spannende Frage ist: Wie hätte Hayek diese Aussage beurteilt, hätte er von Big Data und Künstlicher Intelligenz gewusst?


Exkurs

Oskar Lange und einige seiner Nachfolger, beschäftigten sich mit dieser Frage im Zuge der sogenannten “socialist calculation debate”. Sie formulierten ihre Kritik auch an Hayeks Einschätzungen mit Ideen für eine Art “geplante Marktwirtschaft” (eine davon bekannt als “Lange-Modell”). Die Modelle wurden aber entweder nicht verwirklicht (so wie sie konzipiert waren) oder sie scheiterten u.a. am beschriebenen Informations-Problem.


Das “Komplexitäts- und Informations-Problem” ist gelöst?

Die heutige Form der digitalen Entwicklung zeichnet sich durch die zentrale Verarbeitung sehr großer Datenmengen aus, die mittlerweile von Milliarden an Sensoren in Echtzeit gemessen und von vernetzten APIs aggregiert werden. Anders als früher, sind gewaltige Mengen und Komplexität von Daten kein Problem mehr, sondern vielmehr erwünscht, um einen präziseren Abgleich der Realität zu erhalten und darauf aufbauend bessere Entscheidungen treffen zu können. Der Erfolg etwa von Amazon fußt auf Effekten dieser “ultra-analytischen Daten-Ökonomie”. Der Konzern, der bisher bekannte Unternehmensstrukturen sprengt, hat mit 386 Milliarden US-Dollar alleine im Jahr 2020 einen höheren Umsatz erzielt als die meisten Länder dieser Erde an BIP (Österreich: 446 Mrd.). 

Das im Interview erwähnte “Maximum des Ausmaßes an Information”, das wir heute digital erfassen und analysieren können, hat sich seit Hayeks Analyse exponentiell nach oben entwickelt. Denn die früher kaum zu bewältigenden Datenmengen, welche Marktdynamiken und Preisbildungen beschreiben, können heute analysiert werden, wenn neue Messsysteme (wie IoT) darauf ausgerichtet werden und Institutionen sich mit entsprechender Kompetenz und Ressourcen darum bemühen.

Hinzu kommt, dass es in Märkten vor allem auf das Treffen richtiger Entscheidungen ankommt. Und das wiederum ist das Spezialgebiet künstlicher Intelligenz (KI). Sie klassifiziert nicht bloß Daten und profitiert davon, je größer ein Datensatz oder Korpus ist, aus dem sie selbständig lernt. Das Produkt von KI selbst sind Entscheidungen, die noch dazu mit einer Wahrscheinlichkeit belegt werden, wie richtig sie sind.

Planwirtschaft und Kapitalismus schließen sich also doch nicht aus?

Ökonomisch betrachtet könnten wir daher einen Punkt erreichen, an dem zumindest das Argument fehlender Planbarkeit von wirtschaftlichen Dynamiken aufgrund zu großer Komplexität wegfällt.

Technologie greift dabei nicht (!) in die Wertedebatte ein! Sie vergleicht nicht etwa die Rolle von egoistisch handelnden Individuen im Kapitalismus versus zentral gesteuerten Plansystemen. Sie nimmt keine ethische oder ideologische Wertung vor. Sie löst einfach wertfrei jene Probleme, auf die sie angesetzt wird. Im beschriebenen Fall jenes von fehlender Information und Vorhersagekraft.

Hayek war überzeugt, Planwirtschaft und Marktwirtschaft, sozialistische und demokratische Ordnung, schließen einander grundsätzlich aus. Diese Sichtweise, prägte die meisten von uns fundamental. Aber sie könnte mittlerweile falsch geworden sein.

Als das kommunistische China den “Plan-Kapitalismus” erfand.

Wenn der sowjetische Kommunismus ökonomisch an Komplexität und Datenmangel scheiterte und es deshalb nicht schaffte, seine Wirtschaft erfolgreich “zu planen”, dann erklärt das einen wesentlichen Unterschied zum heutigen China. Das Land entwuchs dem Maoismus, behielt dabei aber die kommunistische Ein-Parteien Doktrin. Seine Ökonomie transformierte es radikal und digital und schuf einen Wettbewerb im Rahmen strenger Leitziele und staatlicher Regulationen. China nutzte seinen enormen Digitalisierungsschub also nicht bloß zum Analysieren, Kontrollieren, Incentivieren und Lenken seiner Bevölkerung.

Ein Land, das mit 1,4 Milliarden Menschen ein permanentes Wachstum zwischen 8 und 18 Prozent verzeichnet, hat seine Datenökonomie zweifelsfrei im Griff und trifft erwiesenermaßen die richtigen (wirtschaftspolitischen) Entscheidungen.

Nicht von ungefähr erklärte die Volksrepublik 2017, die globale Führungsrolle in der Entwicklung von KI übernehmen zu wollen. Auch das erscheint mehr als vorausschauend. Das “Center for Data Innovation” schlussfolgerte, China sei Europa in Sachen KI voraus, weil es deutlich mehr zentrale Datenquellen zur Verfügung stelle. Das Land würde die Technologie darüber hinaus mehr fördern als die EU oder die USA.

In den letzten beiden Jahren wurden zudem starke Programme gestartet, die zwar zentral beauftragt, deren Umsetzung aber regional gesteuert wurden. Regionalregierungen und Provinzen gründeten seitdem unzählige branchenübergreifende Partnerschaften und Forschungseinrichtungen zur Weiterentwicklung von KI. Parallel wurden aber auch riesige KI-Cluster, der mitunter größten digitalen Unicorns, gebildet und Initiativen gestartet, wirtschaftliche und innovative Schwächen proaktiv auszugleichen.

Fazit

Ein derart zentralistisch reguliertes, aber doch irgendwie kapitalistisches System wie in China gibt uns Rätsel auf. Sich ohne politischen Wettbewerb über Jahrzehnte derart erfolgreich ökonomisch zu entwickeln, war nicht vorstellbar; weder für Hayek noch für nachfolgende Ökonom*innen, egal welcher Denk-Schule sie entstammen. Aber es ist Realität. Und es wird Zeit, daraus zu lernen.

In meiner letzten Corona-Kolumne kritisierte ich das Argument, China hätte die Pandemie mithilfe der Daten-Ökonomie nur deshalb besser bewältigen können als wir, weil es eine Autokratie und keine Demokratie sei. Diese Schlussfolgerung ist abzulehnen, denn sie würde bedeuten, dass Diktaturen Technologie besser für ihre Bürger*innen einsetzen können als Demokratien mir freien Bürger*innen. Wer so denkt, versteht möglicherweise nicht genug von Technologie. Denn es kommt nicht auf die Technologie-Form an, sondern auf ihre Implementierung und Anwendung sowie auf die Werte, auf deren Basis man sie entwickelt.

Es gibt keinen triftigen Grund, dass demokratische Gesellschaften nicht umfassend smarte Technologie im Sinne ihrer Bürger*innen einsetzen. Das Potential von KI für Gesellschaft und Ökonomie ist dabei enorm. Und wie wir diese Technologie ethisch und demokratiekonform integrieren, dazu braucht es noch viele gute und mutige Ideen, sowie ein gutes Tech-Verständnis.

KI wird uns jedenfalls dabei helfen, den Klimawandel zu bewältigen und unser Mobilitätsproblem zu lösen. Sie wird helfen mRNA-Impfungen gegen Krebs und CO2-neutrale, ungefährliche Fusions-Kraftwerke zu entwickeln. Beide Innovationen sind schon auf der Zielgeraden. Unternehmerisch wird Europa lernen (müssen), seine Daten in sicherer und ethischer Art und Weise für seine (KI-) Innovationen einzusetzen (und das in großen, grenzüberschreitenden Daten-Kooperationen), um daraus einen Innovations-Turbo zu zünden.

Europas Weg in eine “menschenzentrierte digitale öko-soziale Marktwirtschaft” ist in vielerlei Hinsicht alternativlos. Es ist seine Chance im globalen Wettlauf zwischen China und den USA um Innovationsführerschaft und Wohlstandssicherung.

Mehr dazu in künftigen Kolumnen. Stay tuned!

Deine ungelesenen Artikel:
15.11.2024

WhatAVenture startet Partnerschaft mit CERN

Der Wiener Corporate Venture Builder WhatAVenture kooperiert mit dem Forschungszentrum im Rahmen des Entrepreneurship-Programms CERN Venture Connect.
/artikel/whataventure-startet-partnerschaft-mit-cern
15.11.2024

WhatAVenture startet Partnerschaft mit CERN

Der Wiener Corporate Venture Builder WhatAVenture kooperiert mit dem Forschungszentrum im Rahmen des Entrepreneurship-Programms CERN Venture Connect.
/artikel/whataventure-startet-partnerschaft-mit-cern
WhatAVenture wird Partner - Eines der Gebäude am CERN | (c) Torbjorn Toby Jorgensen via Wikimedia Commons
Eines der Gebäude am CERN | (c) Torbjorn Toby Jorgensen via Wikimedia Commons

Startups einen schnellen, unkomplizierten und maßgeschneiderten Zugang zu CERN-Ressourcen bieten – so lautet die Zielsetzung des Programms CERN Venture Connect (CVC). Das renommierte internationale Forschungszentrum mit Sitz in der Schweiz ist für seine Teilchenbeschleuniger bekannt und bringt mit der Grundlagenforschung im Bereich Teilchenphysik Ergebnisse in Feldern wie Lasertechnologie und Chips hervor, die etwa in der Robotik und im Energie-Bereich Anwendung finden können. Mit WhatAVenture wird nun ein heimischer Corporate Venture Builder ab 2025 CVC-Partner.

“Ansatz kombiniert ingenieurwissenschaftliches Denken und Forschung mit schnellem, marktorientiertem Handeln”

Das Wiener Unternehmen, das unter anderem heimische Konzerne wie Verbund, Strabag und ÖBB und große internationale Unternehmen wie Miele oder EnBW bei ihren Corporate-Venturing-Aktivitäten betreut, will die Übernahme der Technologien durch Startups und Unternehmensgründungen beschleunigen. “Unser Ansatz kombiniert ingenieurwissenschaftliches Denken und Forschung mit schnellem, marktorientiertem Handeln. Auf diese Weise helfen wir Startups und Unternehmen, innovative Produkte schneller zu validieren und auf den Markt zu bringen”, sagt Georg Horn, Lead Venture Architect bei WhatAVenture.

WhatAVenture mit Erfahrung in der Zusammenarbeit mit Forschungsprogrammen

Mit dem WhatAVenture-Framework führe man eine “360-Grad-Validierung” durch, um Machbarkeit und Wirtschaftlichkeit zu überprüfen und technologischen Fortschritt in marktfähige Geschäftsmodelle zu übersetzen. “Wir kennen und verstehen die Denkweise von Ingenieuren und ergänzen diese mit unserem Expertennetzwerk und Marktverständnis”, so Horn. Man habe in der Vergangenheit bereits erfolgreich mit akademischen Forschungs- und Startup-Programmen zusammengearbeitet.

CERN: “Idealer Partner für diese Kooperation”

CERN habe WhatAVenture aufgrund dieser umfassenden Erfahrung als CVC-Partner ausgewählt, heißt es in einer Aussendung. “Wir erkennen das enorme Potenzial unserer Technologien in Deep-Tech-Bereichen wie Energie oder Robotik, und unsere Partnerschaft mit WhatAVenture wird uns dabei helfen, dieses Potenzial zu verwirklichen. Mit ihrer umfassenden Erfahrung in der Frühphasenvalidierung und im Bereich von Startups in der Frühphase haben wir in WhatAVenture den idealen Partner für diese Kooperation gefunden”, sagt dazu Linn Kretzschmar vom CERN.

Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag

AI Summaries

Wie Big Data Planwirtschaft und Kapitalismus zusammenbringt

AI Kontextualisierung

Welche gesellschaftspolitischen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Wie Big Data Planwirtschaft und Kapitalismus zusammenbringt

AI Kontextualisierung

Welche wirtschaftlichen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Wie Big Data Planwirtschaft und Kapitalismus zusammenbringt

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Innovationsmanager:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Wie Big Data Planwirtschaft und Kapitalismus zusammenbringt

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Investor:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Wie Big Data Planwirtschaft und Kapitalismus zusammenbringt

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Politiker:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Wie Big Data Planwirtschaft und Kapitalismus zusammenbringt

AI Kontextualisierung

Was könnte das Bigger Picture von den Inhalten dieses Artikels sein?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Wie Big Data Planwirtschaft und Kapitalismus zusammenbringt

AI Kontextualisierung

Wer sind die relevantesten Personen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Wie Big Data Planwirtschaft und Kapitalismus zusammenbringt

AI Kontextualisierung

Wer sind die relevantesten Organisationen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Wie Big Data Planwirtschaft und Kapitalismus zusammenbringt