01.04.2020

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

Die Zukunft des Fahrens ist autonom... Bis Fahrzeuge über die Fähigkeiten des menschlichen Fahrens verfügen, muss die AI aber noch ein paar Dinge lernen. Das in Graz ansässige Unternehmen AVL adressiert eines dieser Probleme gemeinsam mit dem im Silicon Valley ansässigen Technologieanbieter Deepen.AI.
/artikel/avl-deepen-ai
AVL trainiert die AI mit Deepen AI
(c) Adobe Stock / Monopoly919
sponsored

Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst. Um die Aufgabe des Fahrens zu bewältigen, müssen die autonomen Fahrsysteme (“Autonomous Driving Systems” / ADS) noch erfolgreich das Erkennen von Objekten und das Einschätzen von Situationen erlernen.

+++So hilft Software, menschliche Fehler beim Autofahren zu verhindern+++

Dieser Prozess läuft in mehreren Stufen ab. Die Objekterkennung muss in der ersten Phase feststellen, wo sich überhaupt ein Objekt befindet. Im zweiten Schritt wird dann ein erkanntes Objekt klassifiziert: Es wird festgestellt, ob es sich dabei beispielsweise um ein Fahrzeug, einen Erwachsenen, ein Kind oder ein Tier handelt – denn ein Kind verhält sich zum Beispiel anders als ein Erwachsener. Schließlich muss das System noch das sogenanntes# „Tracking“ durchführen: Dabei wird analysiert, wo sich das Objekt in der Vergangenheit befand, wo es sich nun befindet – um somit Rückschlüsse darüber zu ziehen, wo sich das Objekt vermutlich als nächstes befinden wird.

Die Datenspreu vom Datenweizen trennen

Selbstfahrende Autos nutzen dabei Daten verschiedener im Fahrzeug verbauter Sensoren – wie etwa Kameras oder der LiDAR-Sensor, welcher den Abstand der Objekte zum Auto misst. Diese Sensoren produzieren unzählige Daten – und eben diese Daten müssen korrekt zugeordnet werden, so dass die AI erkennen kann, welche Daten für die Sicherheit relevant sind und welche nicht.

Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel. Deepen hat in Zusammenarbeit mit der Firma AVL aus Graz eine Technologie zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt. Erste Ergebnisse dieser Zusammenarbeit wurden im Rahmen der CES 2020 in Las Vegas präsentiert.

PoC mit AVL für die Zukunft des autonomen Fahrens

Beim von drei ehemaligen Google-Mitarbeitern gegründeten Startup Deepen.AI geht es um die zuvor erwähnte Herausforderung, autonomen Fahrsystemen zu einem besseren Verständnis ihrer Umwelt zu verhelfen. Um dies zu erreichen, braucht die KI etwas menschliche Hilfe, um effektiv darin trainiert zu werden, korrekte Schlussfolgerungen zu ziehen. Neben den 17 Vollzeit-Mitarbeitern beschäftigt Deepen.AI daher rund 250 Menschen in Indien, welche die von den Sensoren erfassten Daten bereinigen und die KI darin trainieren, Objekte zu erkennen: So markieren sie zum Beispiel, wenn die AI einen Seitenspiegel bei einem Auto übersehen oder Objekte falsch klassifiziert hat. „Diese Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat“, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: „Sie helfen bei der Klassifizierung und Kalibrierung.“

Eben dieser starke Fokus auf Datenintegrität ist auch Schwerpunkt des gemeinsam mit AVL entwickelten PoC. „Es ist für AVL wichtig, auf Pixel- und Point-Level korrekt annotierte Daten zu haben“, erläutert Thomas Schlömicher, Research Engineer ADAS bei AVL. Im Idealfall soll im Rahmen der Kooperation eine komplette „Data Intelligence Pipeline“  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.

 „Safety Pool“ als nächster Schritt nach dem PoC

„Gemeinsam“ ist auch das Stichwort hinter dem Ziel, das die Partner nach dem erfolgreichen PoC gemeinsam verfolgen möchten. Eine große Herausforderung für die Branche ist, dass die verschiedenen Autohersteller derzeit unterschiedliche Wege gehen, wobei jeder seinen eigenen Ansatz verfolgt. „Die Branche braucht aber Standards“, sagt Musa: Das sei die Basis dafür, dass jeder in die Sicherheit der Systeme vertraut.

Daher hat “Safety Pool™, (www.safetypool.ai), ein Projekt unter der Leitung von Deepen und dem Weltwirtschaftsforum, das Ziel, quantifizierte Benchmarks und einheitliche Beschreibungen von Fahrsituationen zu definieren, die dann nicht nur als Standards für die Industrie, sondern auch als solides Rückgrat zur Ableitung von konsensbasierten Sicherheitsbewertungen und Rahmenregelungen dienen sollen. Dies wird die Gesellschaft einen bedeutenden Schritt näher zum Ziel bringen, von den revolutionären Fähigkeiten der automatisierten Fahrtechnologien zu profitieren.

AVL und Deepen AI im Video-Talk

==> zur Website des Startups

==> zur Website der AVL Creators Expedition

Redaktionstipps
Deine ungelesenen Artikel:
16.12.2024

250 Mio. Dollar Investment für US-Startup von TU-Wien-Absolventen – Bewertung bei über 2 Milliarden

Ramin Hasani und Mathias Lechner haben eine Wiener Vergangenheit und konnten sich nun in Boston für ihr MIT-Spin-off Liquid AI eine gewaltige Investition sichern.
/artikel/250-mio-dollar-investment-fuer-us-startup-von-tu-wien-absolventen-bewertung-bei-ueber-2-milliarden
16.12.2024

250 Mio. Dollar Investment für US-Startup von TU-Wien-Absolventen – Bewertung bei über 2 Milliarden

Ramin Hasani und Mathias Lechner haben eine Wiener Vergangenheit und konnten sich nun in Boston für ihr MIT-Spin-off Liquid AI eine gewaltige Investition sichern.
/artikel/250-mio-dollar-investment-fuer-us-startup-von-tu-wien-absolventen-bewertung-bei-ueber-2-milliarden
(c) Liquid AI - (v.l.) Mathias Ledhner, Eva Rus, Alexander Amini und Ramin Hasani von Liquid AI.

Liquid AI CEO Ramin Hasani war von 2016 bis 2020 “Machine Learning Researcher” an der TU Wien; sein CTO Mathias Lechner machte von 2018 bis 2022 am “Institute of Science and Technology Austria (ISTA) seinen PhD – davor in der österreichischen Hauptstadt seinen Master, ebenfalls an der Technischen Universität.

Liquid AI: Weniger Daten und Rechenleistung nötig

Nun vermelden beide ein 250 Millionen US-Dollar Investment für ihr Bostoner MIT-Spin-off (Liquid AI hat im Vorjahr bereits rund 46,6 Millionen US-Dollar an Startkapital erhalten): “Diese Finanzierung wird uns dabei helfen, die Entwicklung, Skalierung und Bereitstellung von ‘Liquid Foundation Models’ (LFMs: Allzweck-KI-Modelle, die weniger Daten und Rechenleistung benötigen) zu beschleunigen, unseren leichtgewichtigen, universell einsetzbaren KI-Modellen, die private, effiziente und zuverlässige KI auf Unternehmensniveau für alle ermöglichen”, teilen sie per Blogeintrag mit.

Das Ziel von Liquid AI, dessen Bewertung nun laut Bloomberg bei über zwei Milliarden US-Dollar liegt, ist es, das leistungsfähigste und effizienteste “KI-System in jeder Größenordnung” zu entwickeln.

“Wir sind stolz darauf, dass unsere neuen, branchenführenden Partner unserer Mission vertrauen; gemeinsam wollen wir souveräne KI-Erfahrungen für Unternehmen und Nutzer freisetzen”, sagt Hasani.

Skalierbarkeit

Seit der Gründung des KI-Startups hat das Duo daran gearbeitet, zu beweisen, dass ihre Wissenschaft und Technologie skalierbar sei: “Wir haben unsere textbasierten Modelle veröffentlicht, multimodale LFMs angekündigt und begonnen, unsere KI-Produkte mit wichtigen Partnern auf dem Markt zu testen, um ihre Wirkung in der Praxis zu demonstrieren”, heißt es weiter.

In der nächsten Phase möchte Liquid AI die Series-A nutzen, um ihre Recheninfrastruktur zu skalieren, die Produktbereitstellung im Edge- und On-Premise-Bereich zu beschleunigen, z. B. LFM-Inferenz- und Feinabstimmungs-Stacks, und um ihre KI-Angebote über Partnerschaften einem breiteren Publikum zugänglich zu machen.

Liquid AI: Vorteile ausdehnen

“Wir werden unsere KI-Produkte in geschäftskritische Workflows in vielen Bereichen wie Unterhaltungselektronik, Telekommunikation, Finanzdienstleistungen, E-Commerce und Biotechnologie integrieren”, so das Team weiter. “Die Finanzierung wird auch die wissenschaftliche und technologische Entwicklung von Liquid AI beschleunigen und die Vorteile von LFMs auf mehr Modellgrößen und Datenmodalitäten ausdehnen.”

Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag

AI Summaries

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Welche gesellschaftspolitischen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Welche wirtschaftlichen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Innovationsmanager:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Investor:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Politiker:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Was könnte das Bigger Picture von den Inhalten dieses Artikels sein?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Wer sind die relevantesten Personen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Wer sind die relevantesten Organisationen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.