01.04.2020

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

Die Zukunft des Fahrens ist autonom... Bis Fahrzeuge über die Fähigkeiten des menschlichen Fahrens verfügen, muss die AI aber noch ein paar Dinge lernen. Das in Graz ansässige Unternehmen AVL adressiert eines dieser Probleme gemeinsam mit dem im Silicon Valley ansässigen Technologieanbieter Deepen.AI.
/artikel/avl-deepen-ai
AVL trainiert die AI mit Deepen AI
(c) Adobe Stock / Monopoly919
sponsored

Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst. Um die Aufgabe des Fahrens zu bewältigen, müssen die autonomen Fahrsysteme (“Autonomous Driving Systems” / ADS) noch erfolgreich das Erkennen von Objekten und das Einschätzen von Situationen erlernen.

+++So hilft Software, menschliche Fehler beim Autofahren zu verhindern+++

Dieser Prozess läuft in mehreren Stufen ab. Die Objekterkennung muss in der ersten Phase feststellen, wo sich überhaupt ein Objekt befindet. Im zweiten Schritt wird dann ein erkanntes Objekt klassifiziert: Es wird festgestellt, ob es sich dabei beispielsweise um ein Fahrzeug, einen Erwachsenen, ein Kind oder ein Tier handelt – denn ein Kind verhält sich zum Beispiel anders als ein Erwachsener. Schließlich muss das System noch das sogenanntes# „Tracking“ durchführen: Dabei wird analysiert, wo sich das Objekt in der Vergangenheit befand, wo es sich nun befindet – um somit Rückschlüsse darüber zu ziehen, wo sich das Objekt vermutlich als nächstes befinden wird.

Die Datenspreu vom Datenweizen trennen

Selbstfahrende Autos nutzen dabei Daten verschiedener im Fahrzeug verbauter Sensoren – wie etwa Kameras oder der LiDAR-Sensor, welcher den Abstand der Objekte zum Auto misst. Diese Sensoren produzieren unzählige Daten – und eben diese Daten müssen korrekt zugeordnet werden, so dass die AI erkennen kann, welche Daten für die Sicherheit relevant sind und welche nicht.

Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel. Deepen hat in Zusammenarbeit mit der Firma AVL aus Graz eine Technologie zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt. Erste Ergebnisse dieser Zusammenarbeit wurden im Rahmen der CES 2020 in Las Vegas präsentiert.

PoC mit AVL für die Zukunft des autonomen Fahrens

Beim von drei ehemaligen Google-Mitarbeitern gegründeten Startup Deepen.AI geht es um die zuvor erwähnte Herausforderung, autonomen Fahrsystemen zu einem besseren Verständnis ihrer Umwelt zu verhelfen. Um dies zu erreichen, braucht die KI etwas menschliche Hilfe, um effektiv darin trainiert zu werden, korrekte Schlussfolgerungen zu ziehen. Neben den 17 Vollzeit-Mitarbeitern beschäftigt Deepen.AI daher rund 250 Menschen in Indien, welche die von den Sensoren erfassten Daten bereinigen und die KI darin trainieren, Objekte zu erkennen: So markieren sie zum Beispiel, wenn die AI einen Seitenspiegel bei einem Auto übersehen oder Objekte falsch klassifiziert hat. „Diese Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat“, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: „Sie helfen bei der Klassifizierung und Kalibrierung.“

Eben dieser starke Fokus auf Datenintegrität ist auch Schwerpunkt des gemeinsam mit AVL entwickelten PoC. „Es ist für AVL wichtig, auf Pixel- und Point-Level korrekt annotierte Daten zu haben“, erläutert Thomas Schlömicher, Research Engineer ADAS bei AVL. Im Idealfall soll im Rahmen der Kooperation eine komplette „Data Intelligence Pipeline“  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.

 „Safety Pool“ als nächster Schritt nach dem PoC

„Gemeinsam“ ist auch das Stichwort hinter dem Ziel, das die Partner nach dem erfolgreichen PoC gemeinsam verfolgen möchten. Eine große Herausforderung für die Branche ist, dass die verschiedenen Autohersteller derzeit unterschiedliche Wege gehen, wobei jeder seinen eigenen Ansatz verfolgt. „Die Branche braucht aber Standards“, sagt Musa: Das sei die Basis dafür, dass jeder in die Sicherheit der Systeme vertraut.

Daher hat “Safety Pool™, (www.safetypool.ai), ein Projekt unter der Leitung von Deepen und dem Weltwirtschaftsforum, das Ziel, quantifizierte Benchmarks und einheitliche Beschreibungen von Fahrsituationen zu definieren, die dann nicht nur als Standards für die Industrie, sondern auch als solides Rückgrat zur Ableitung von konsensbasierten Sicherheitsbewertungen und Rahmenregelungen dienen sollen. Dies wird die Gesellschaft einen bedeutenden Schritt näher zum Ziel bringen, von den revolutionären Fähigkeiten der automatisierten Fahrtechnologien zu profitieren.

AVL und Deepen AI im Video-Talk

==> zur Website des Startups

==> zur Website der AVL Creators Expedition

Redaktionstipps
Deine ungelesenen Artikel:
06.11.2024

GO SEOUL 2025: Wie Energy und Mobility-Startups den Sprung nach Südkorea schaffen

Global Incubator Network Austria (GIN) hat seinen neuen Call GO SEOUL 2025 gestartet. Das Programm richtet sich an Startups aus den Bereichen Energie und Mobilität, die ihre ersten Expansionsschritte nach Südkorea setzen wollen.
/artikel/go-seoul-2025
06.11.2024

GO SEOUL 2025: Wie Energy und Mobility-Startups den Sprung nach Südkorea schaffen

Global Incubator Network Austria (GIN) hat seinen neuen Call GO SEOUL 2025 gestartet. Das Programm richtet sich an Startups aus den Bereichen Energie und Mobilität, die ihre ersten Expansionsschritte nach Südkorea setzen wollen.
/artikel/go-seoul-2025

Als viertgrößte Volkswirtschaft Asiens und Innovationszentrum für Technologien wie Elektronik, Automobilbau und Halbleiter bietet Südkorea hervorragende Wachstumschancen für Unternehmen und Investoren. Die strategische Lage des Landes als Brücke zu den Märkten in China, Japan und Südostasien eröffnet auch ausländischen Unternehmen zusätzliche Marktzugänge und Wachstumschancen.

Fokus auf Energie und Mobilität

Für österreichische Startups, die sich im technologisch hochentwickelten Markt Südkoreas etablieren möchten, startet das Global Incubator Network Austria (GIN) das Acceleration-Programm GO SEOUL 2025. Das Programm richtet sich an Startups (mid- or later-stage) mit innovativen Lösungen in den Bereichen Energie und Mobilität, die ihre Expansionsstrategie für Südkorea vorantreiben wollen. Die teilnehmenden Startups erwartet eine intensive einwöchige Reise im Juni 2025, die einen umfassenden Markteinblick und gezielte Vernetzungsmöglichkeiten bietet.

Was GO SEOUL 2025 bietet

Das Programm ist in zwei Phasen unterteilt. Zunächst erhalten die Startups im Rahmen eines Onboardings gezielte Einblicke in den südkoreanischen Markt, um den Aufenthalt optimal nutzen zu können. Hierzu gehören ein dreistündiges IP-Coaching und exklusiver Zugang zu den GIN-Masterclasses, die wichtige Tipps und Strategien für den Markteintritt vermitteln. In einem Kick-off-Dinner in Wien können die Teilnehmer:innen zudem bereits erste Kontakte knüpfen.

Der zweite Teil des Programms besteht aus der Expansionsreise nach Seoul, die von 23. Juni bis 27. Juni 2025 stattfindet. Während dieser Woche werden individuelle Geschäftstreffen organisiert, die gezielt auf internationale Leads abzielen. Startups können ihre Lösungen und Ideen auf speziell zugeschnittenen Pitch-Events präsentieren und potenzielle Partner sowie Investoren direkt vor Ort treffen.

Im Rahmen von GO SEOUL 2025 nehmen die Teilnehmer:innen auch an Südkoreas führendem Startup-Event NextRise teil. Das Event dient als zentrale Plattform für Startups, Unternehmen und Investoren, um grenzüberschreitend zusammenzuarbeiten, Ideen auszutauschen und strategische Partnerschaften zu bilden. 2024 zählte NextRise mehr als 25.000 Teilnehmer:innen, wobei über 3.300 Business Meetups organisiert wurden.

Reisekostenzuschuss von bis zu EUR 10.000

GIN übernimmt bis zu 80 Prozent der programmspezifischen Kosten für Flug und Unterkunft, mit einer maximalen Fördersumme von EUR 10.000 pro Startup. Mit dem Gender-Bonus können sogar bis zu 90 Prozent der Kosten abgedeckt werden.

Teilnahmeberechtigt sind österreichische Startups, die sich in den Bereichen Energie und Mobilität positionieren, über ein skalierbares Geschäftsmodell verfügen und bereits erste Investitionen erhalten haben. Die Bewerbungsfrist für GO SEOUL 2025 endet am 1. Dezember 2025. Interessierte Startups können sich über die Plattform aws Connect anmelden und ihr Pitchdeck einreichen.


GO SEOUL 2025 ist ein Accelerator-Programm von Global Incubator Network Austria (GIN) und Teil des GO ASIA-Programms. Über die letzten Jahre wurden damit zahlreiche Startups bei deren Markteintritt in asiatische Märkte unterstützt. Das Programm wird in Zusammenarbeit mit Außenwirtschaft Austria organisiert. Weitere Informationen zum aktuellen Call finden Startups hier: https://gin-austria.com/calls/goseoul2025

Kontakt

Bei Fragen zu GO SEOUL oder zum Bewerbungsverfahren können sich Startups an folgenden Kontakt wenden:

Christoph Pekarek

Project Manager | GO ASIA

T +43 1 50175 447

[email protected]

Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag

AI Summaries

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Welche gesellschaftspolitischen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Welche wirtschaftlichen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Innovationsmanager:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Investor:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Politiker:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Was könnte das Bigger Picture von den Inhalten dieses Artikels sein?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Wer sind die relevantesten Personen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Wer sind die relevantesten Organisationen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.