01.04.2020

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

Die Zukunft des Fahrens ist autonom... Bis Fahrzeuge über die Fähigkeiten des menschlichen Fahrens verfügen, muss die AI aber noch ein paar Dinge lernen. Das in Graz ansässige Unternehmen AVL adressiert eines dieser Probleme gemeinsam mit dem im Silicon Valley ansässigen Technologieanbieter Deepen.AI.
/artikel/avl-deepen-ai
AVL trainiert die AI mit Deepen AI
(c) Adobe Stock / Monopoly919
sponsored

Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst. Um die Aufgabe des Fahrens zu bewältigen, müssen die autonomen Fahrsysteme (“Autonomous Driving Systems” / ADS) noch erfolgreich das Erkennen von Objekten und das Einschätzen von Situationen erlernen.

+++So hilft Software, menschliche Fehler beim Autofahren zu verhindern+++

Dieser Prozess läuft in mehreren Stufen ab. Die Objekterkennung muss in der ersten Phase feststellen, wo sich überhaupt ein Objekt befindet. Im zweiten Schritt wird dann ein erkanntes Objekt klassifiziert: Es wird festgestellt, ob es sich dabei beispielsweise um ein Fahrzeug, einen Erwachsenen, ein Kind oder ein Tier handelt – denn ein Kind verhält sich zum Beispiel anders als ein Erwachsener. Schließlich muss das System noch das sogenanntes# „Tracking“ durchführen: Dabei wird analysiert, wo sich das Objekt in der Vergangenheit befand, wo es sich nun befindet – um somit Rückschlüsse darüber zu ziehen, wo sich das Objekt vermutlich als nächstes befinden wird.

Die Datenspreu vom Datenweizen trennen

Selbstfahrende Autos nutzen dabei Daten verschiedener im Fahrzeug verbauter Sensoren – wie etwa Kameras oder der LiDAR-Sensor, welcher den Abstand der Objekte zum Auto misst. Diese Sensoren produzieren unzählige Daten – und eben diese Daten müssen korrekt zugeordnet werden, so dass die AI erkennen kann, welche Daten für die Sicherheit relevant sind und welche nicht.

Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel. Deepen hat in Zusammenarbeit mit der Firma AVL aus Graz eine Technologie zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt. Erste Ergebnisse dieser Zusammenarbeit wurden im Rahmen der CES 2020 in Las Vegas präsentiert.

PoC mit AVL für die Zukunft des autonomen Fahrens

Beim von drei ehemaligen Google-Mitarbeitern gegründeten Startup Deepen.AI geht es um die zuvor erwähnte Herausforderung, autonomen Fahrsystemen zu einem besseren Verständnis ihrer Umwelt zu verhelfen. Um dies zu erreichen, braucht die KI etwas menschliche Hilfe, um effektiv darin trainiert zu werden, korrekte Schlussfolgerungen zu ziehen. Neben den 17 Vollzeit-Mitarbeitern beschäftigt Deepen.AI daher rund 250 Menschen in Indien, welche die von den Sensoren erfassten Daten bereinigen und die KI darin trainieren, Objekte zu erkennen: So markieren sie zum Beispiel, wenn die AI einen Seitenspiegel bei einem Auto übersehen oder Objekte falsch klassifiziert hat. „Diese Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat“, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: „Sie helfen bei der Klassifizierung und Kalibrierung.“

Eben dieser starke Fokus auf Datenintegrität ist auch Schwerpunkt des gemeinsam mit AVL entwickelten PoC. „Es ist für AVL wichtig, auf Pixel- und Point-Level korrekt annotierte Daten zu haben“, erläutert Thomas Schlömicher, Research Engineer ADAS bei AVL. Im Idealfall soll im Rahmen der Kooperation eine komplette „Data Intelligence Pipeline“  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.

 „Safety Pool“ als nächster Schritt nach dem PoC

„Gemeinsam“ ist auch das Stichwort hinter dem Ziel, das die Partner nach dem erfolgreichen PoC gemeinsam verfolgen möchten. Eine große Herausforderung für die Branche ist, dass die verschiedenen Autohersteller derzeit unterschiedliche Wege gehen, wobei jeder seinen eigenen Ansatz verfolgt. „Die Branche braucht aber Standards“, sagt Musa: Das sei die Basis dafür, dass jeder in die Sicherheit der Systeme vertraut.

Daher hat “Safety Pool™, (www.safetypool.ai), ein Projekt unter der Leitung von Deepen und dem Weltwirtschaftsforum, das Ziel, quantifizierte Benchmarks und einheitliche Beschreibungen von Fahrsituationen zu definieren, die dann nicht nur als Standards für die Industrie, sondern auch als solides Rückgrat zur Ableitung von konsensbasierten Sicherheitsbewertungen und Rahmenregelungen dienen sollen. Dies wird die Gesellschaft einen bedeutenden Schritt näher zum Ziel bringen, von den revolutionären Fähigkeiten der automatisierten Fahrtechnologien zu profitieren.

AVL und Deepen AI im Video-Talk

==> zur Website des Startups

==> zur Website der AVL Creators Expedition

Redaktionstipps
Deine ungelesenen Artikel:
16.12.2024

“Die Zeit des Zuwartens ist vorbei”

Nachlese. Wo steht die österreichische Wirtschaft bei künstlicher Intelligenz zwei Jahre nach Erscheinen von ChatGPT? Dies diskutieren Doris Lippert von Microsoft und Thomas Steirer von Nagarro in der ersten Folge der neuen brutkasten-Serie "No Hype KI".
/artikel/no-hype-ki-folge-1-nachlese
16.12.2024

“Die Zeit des Zuwartens ist vorbei”

Nachlese. Wo steht die österreichische Wirtschaft bei künstlicher Intelligenz zwei Jahre nach Erscheinen von ChatGPT? Dies diskutieren Doris Lippert von Microsoft und Thomas Steirer von Nagarro in der ersten Folge der neuen brutkasten-Serie "No Hype KI".
/artikel/no-hype-ki-folge-1-nachlese
Doris Lippert (Microsoft | Director Global Partner Solutions und Mitglied der Geschäftsleitung) und Thomas Steirer (Nagarro | Chief Technology Officer)
Doris Lippert (Microsoft | Director Global Partner Solutions und Mitglied der Geschäftsleitung) und Thomas Steirer (Nagarro | Chief Technology Officer) | Foto: brutkasten

“No Hype KI” wird unterstützt von CANCOM Austria, IBM, ITSV, Microsoft, Nagarro, Red Hat und Universität Graz


Mit der neuen multimedialen Serie “No Hype KI” wollen wir eine Bestandsaufnahme zu künstlicher Intelligenz in der österreichischen Wirtschaft liefern. In der ersten Folge diskutieren Doris Lippert, Director Global Partner Solutions und Mitglied der Geschäftsleitung bei Microsoft Österreich, und Thomas Steirer, Chief Technology Officer bei Nagarro, über den Status Quo zwei Jahre nach Erscheinen von ChatGPT.

Du willst bei "No Hype KI" am Laufenden bleiben?

Trag dich hier ein und du bekommst jede Folge direkt in die Inbox!

„Das war ein richtiger Hype. Nach wenigen Tagen hatte ChatGPT über eine Million Nutzer”, erinnert sich Lippert an den Start des OpenAI-Chatbots Ende 2022. Seither habe sich aber viel geändert: “Heute ist das gar kein Hype mehr, sondern Realität“, sagt Lippert. Die Technologie habe sich längst in den Alltag integriert, kaum jemand spreche noch davon, dass er sein Smartphone über eine „KI-Anwendung“ entsperre oder sein Auto mithilfe von KI einparke: “Wenn es im Alltag angekommen ist, sagt keiner mehr KI-Lösung dazu”.

Auch Thomas Steirer erinnert sich an den Moment, als ChatGPT erschien: „Für mich war das ein richtiger Flashback. Ich habe vor vielen Jahren KI studiert und dann lange darauf gewartet, dass wirklich alltagstaugliche Lösungen kommen. Mit ChatGPT war dann klar: Jetzt sind wir wirklich da.“ Er sieht in dieser Entwicklung einen entscheidenden Schritt, der KI aus der reinen Forschungsecke in den aktiven, spürbaren Endnutzer-Bereich gebracht habe.

Von erster Begeisterung zu realistischen Erwartungen

Anfangs herrschte in Unternehmen noch ein gewisser Aktionismus: „Den Satz ‘Wir müssen irgendwas mit KI machen’ habe ich sehr, sehr oft gehört“, meint Steirer. Inzwischen habe sich die Erwartungshaltung realistischer entwickelt. Unternehmen gingen nun strategischer vor, untersuchten konkrete Use Cases und setzten auf institutionalisierte Strukturen – etwa durch sogenannte “Centers of Excellence” – um KI langfristig zu integrieren. „Wir sehen, dass jetzt fast jedes Unternehmen in Österreich KI-Initiativen hat“, sagt Lippert. „Diese Anlaufkurve hat eine Zeit lang gedauert, aber jetzt sehen wir viele reale Use-Cases und wir brauchen uns als Land nicht verstecken.“

Spar, Strabag, Uniqa: Use-Cases aus der österreichischen Wirtschaft

Lippert nennt etwa den Lebensmittelhändler Spar, der mithilfe von KI sein Obst- und Gemüsesortiment auf Basis von Kaufverhalten, Wetterdaten und Rabatten punktgenau steuert. Weniger Verschwendung, bessere Lieferkette: “Lieferkettenoptimierung ist ein Purpose-Driven-Use-Case, der international sehr viel Aufmerksamkeit bekommt und der sich übrigens über alle Branchen repliziert”, erläutert die Microsoft-Expertin.

Auch die Baubranche hat Anwendungsfälle vorzuweisen: Bei Strabag wird mittels KI die Risikobewertung von Baustellen verbessert, indem historische Daten zum Bauträger, zu Lieferanten und zum Bauteam analysiert werden.

Im Versicherungsbereich hat die UNIQA mithilfe eines KI-basierten „Tarif-Bots“ den Zeitaufwand für Tarifauskünfte um 50 Prozent reduziert, was die Mitarbeiter:innen von repetitiven Tätigkeiten entlastet und ihnen mehr Spielraum für sinnstiftende Tätigkeiten lässt.

Nicht immer geht es aber um Effizienzsteigerung. Ein KI-Projekt einer anderen Art wurde kürzlich bei der jüngsten Microsoft-Konferenz Ignite präsentiert: Der Hera Space Companion (brutkasten berichtete). Gemeinsam mit der ESA, Terra Mater und dem österreichischen Startup Impact.ai wurde ein digitaler Space Companion entwickelt, mit dem sich Nutzer in Echtzeit über Weltraummissionen austauschen können. „Das macht Wissenschaft zum ersten Mal wirklich greifbar“, sagt Lippert. „Meine Kinder haben am Wochenende die Planeten im Gespräch mit dem Space Companion gelernt.“

Herausforderungen: Infrastruktur, Daten und Sicherheit

Auch wenn die genannten Use Cases Erfolgsbeispiele zeigen, sind Unternehmen, die KI einsetzen wollen, klarerweise auch mit Herausforderungen konfrontiert. Diese unterscheiden sich je nachdem, wie weit die „KI-Maturität“ der Unternehmen fortgeschritten sei, erläutert Lippert. Für jene, die schon Use-.Cases erprobt haben, gehe es nun um den großflächigen Rollout. Dabei offenbaren sich klassische Herausforderungen: „Integration in Legacy-Systeme, Datenstrategie, Datenarchitektur, Sicherheit – all das darf man nicht unterschätzen“, sagt Lippert.

“Eine große Herausforderung für Unternehmen ist auch die Frage: Wer sind wir überhaupt?”, ergänzt Steirer. Unternehmen müssten sich fragen, ob sie eine KI-Firma seien, ein Software-Entwicklungsunternehmen oder ein reines Fachunternehmen. Daran anschließend ergeben sich dann Folgefragen: „Muss ich selbst KI-Modelle trainieren oder kann ich auf bestehende Plattformen aufsetzen? Was ist meine langfristige Strategie?“ Er sieht in dieser Phase den Übergang von kleinen Experimenten über breite Implementierung bis hin zur Institutionalisierung von KI im Unternehmen.

Langfristiges Potenzial heben

Langfristig stehen die Zeichen stehen auf Wachstum, sind sich Lippert und Steirer einig. „Wir überschätzen oft den kurzfristigen Impact und unterschätzen den langfristigen“, sagt die Microsoft-Expertin. Sie verweist auf eine im Juni präsentierte Studie, wonach KI-gestützte Ökosysteme das Bruttoinlandsprodukt Österreichs deutlich steigern könnten – und zwar um etwa 18 Prozent (brutkasten berichtete). „Das wäre wie ein zehntes Bundesland, nach Wien wäre es dann das wirtschaftsstärkste“, so Lippert. „Wir müssen uns klar machen, dass KI eine Allzwecktechnologie wie Elektrizität oder das Internet ist.“

Auch Steirer ist überzeugt, dass sich für heimische Unternehmen massive Chancen eröffnen: “Ich glaube auch, dass wir einfach massiv unterschätzen, was das für einen langfristigen Impact haben wird”. Der Appell des Nagarro-Experten: „Es geht jetzt wirklich darum, nicht mehr zuzuwarten, sondern sich mit KI auseinanderzusetzen, umzusetzen und Wert zu stiften.“


Folge nachsehen: No Hype KI – wo stehen wir nach zwei Jahren ChatGPT?


Die Serie wird von brutkasten in redaktioneller Unabhängigkeit mit finanzieller Unterstützung unserer Partner:innen produziert.

Die Partner von No Hype KI
Die Partner von No Hype KI
Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag

AI Summaries

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Welche gesellschaftspolitischen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Welche wirtschaftlichen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Innovationsmanager:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Investor:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Politiker:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Was könnte das Bigger Picture von den Inhalten dieses Artikels sein?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Wer sind die relevantesten Personen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Wer sind die relevantesten Organisationen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.