01.04.2020

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

Die Zukunft des Fahrens ist autonom... Bis Fahrzeuge über die Fähigkeiten des menschlichen Fahrens verfügen, muss die AI aber noch ein paar Dinge lernen. Das in Graz ansässige Unternehmen AVL adressiert eines dieser Probleme gemeinsam mit dem im Silicon Valley ansässigen Technologieanbieter Deepen.AI.
/artikel/avl-deepen-ai
AVL trainiert die AI mit Deepen AI
(c) Adobe Stock / Monopoly919
sponsored

Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst. Um die Aufgabe des Fahrens zu bewältigen, müssen die autonomen Fahrsysteme (“Autonomous Driving Systems” / ADS) noch erfolgreich das Erkennen von Objekten und das Einschätzen von Situationen erlernen.

+++So hilft Software, menschliche Fehler beim Autofahren zu verhindern+++

Dieser Prozess läuft in mehreren Stufen ab. Die Objekterkennung muss in der ersten Phase feststellen, wo sich überhaupt ein Objekt befindet. Im zweiten Schritt wird dann ein erkanntes Objekt klassifiziert: Es wird festgestellt, ob es sich dabei beispielsweise um ein Fahrzeug, einen Erwachsenen, ein Kind oder ein Tier handelt – denn ein Kind verhält sich zum Beispiel anders als ein Erwachsener. Schließlich muss das System noch das sogenanntes# „Tracking“ durchführen: Dabei wird analysiert, wo sich das Objekt in der Vergangenheit befand, wo es sich nun befindet – um somit Rückschlüsse darüber zu ziehen, wo sich das Objekt vermutlich als nächstes befinden wird.

Die Datenspreu vom Datenweizen trennen

Selbstfahrende Autos nutzen dabei Daten verschiedener im Fahrzeug verbauter Sensoren – wie etwa Kameras oder der LiDAR-Sensor, welcher den Abstand der Objekte zum Auto misst. Diese Sensoren produzieren unzählige Daten – und eben diese Daten müssen korrekt zugeordnet werden, so dass die AI erkennen kann, welche Daten für die Sicherheit relevant sind und welche nicht.

Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel. Deepen hat in Zusammenarbeit mit der Firma AVL aus Graz eine Technologie zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt. Erste Ergebnisse dieser Zusammenarbeit wurden im Rahmen der CES 2020 in Las Vegas präsentiert.

PoC mit AVL für die Zukunft des autonomen Fahrens

Beim von drei ehemaligen Google-Mitarbeitern gegründeten Startup Deepen.AI geht es um die zuvor erwähnte Herausforderung, autonomen Fahrsystemen zu einem besseren Verständnis ihrer Umwelt zu verhelfen. Um dies zu erreichen, braucht die KI etwas menschliche Hilfe, um effektiv darin trainiert zu werden, korrekte Schlussfolgerungen zu ziehen. Neben den 17 Vollzeit-Mitarbeitern beschäftigt Deepen.AI daher rund 250 Menschen in Indien, welche die von den Sensoren erfassten Daten bereinigen und die KI darin trainieren, Objekte zu erkennen: So markieren sie zum Beispiel, wenn die AI einen Seitenspiegel bei einem Auto übersehen oder Objekte falsch klassifiziert hat. „Diese Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat“, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: „Sie helfen bei der Klassifizierung und Kalibrierung.“

Eben dieser starke Fokus auf Datenintegrität ist auch Schwerpunkt des gemeinsam mit AVL entwickelten PoC. „Es ist für AVL wichtig, auf Pixel- und Point-Level korrekt annotierte Daten zu haben“, erläutert Thomas Schlömicher, Research Engineer ADAS bei AVL. Im Idealfall soll im Rahmen der Kooperation eine komplette „Data Intelligence Pipeline“  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.

 „Safety Pool“ als nächster Schritt nach dem PoC

„Gemeinsam“ ist auch das Stichwort hinter dem Ziel, das die Partner nach dem erfolgreichen PoC gemeinsam verfolgen möchten. Eine große Herausforderung für die Branche ist, dass die verschiedenen Autohersteller derzeit unterschiedliche Wege gehen, wobei jeder seinen eigenen Ansatz verfolgt. „Die Branche braucht aber Standards“, sagt Musa: Das sei die Basis dafür, dass jeder in die Sicherheit der Systeme vertraut.

Daher hat “Safety Pool™, (www.safetypool.ai), ein Projekt unter der Leitung von Deepen und dem Weltwirtschaftsforum, das Ziel, quantifizierte Benchmarks und einheitliche Beschreibungen von Fahrsituationen zu definieren, die dann nicht nur als Standards für die Industrie, sondern auch als solides Rückgrat zur Ableitung von konsensbasierten Sicherheitsbewertungen und Rahmenregelungen dienen sollen. Dies wird die Gesellschaft einen bedeutenden Schritt näher zum Ziel bringen, von den revolutionären Fähigkeiten der automatisierten Fahrtechnologien zu profitieren.

AVL und Deepen AI im Video-Talk

==> zur Website des Startups

==> zur Website der AVL Creators Expedition

Redaktionstipps
Deine ungelesenen Artikel:
15.11.2024

Kreativität unter Druck: Wie du und dein Team trotz Zeitnot kreative Ideen entwickelst

Gastbeitrag. Als Expertin für Creative Leadership unterstützt Kerstin Lobner Führungskräfte und Teams dabei, innovative Lösungen zu finden und ihr kreatives Potenzial zu entfalten. Für die brutkasten-Community liefert sie praktische Tipps für kreative Methoden zur Ideenentwicklung in der Wirtschaft.
/artikel/kreativitaet-unter-druck-wie-du-und-dein-team-trotz-zeitnot-kreative-ideen-entwickelst
15.11.2024

Kreativität unter Druck: Wie du und dein Team trotz Zeitnot kreative Ideen entwickelst

Gastbeitrag. Als Expertin für Creative Leadership unterstützt Kerstin Lobner Führungskräfte und Teams dabei, innovative Lösungen zu finden und ihr kreatives Potenzial zu entfalten. Für die brutkasten-Community liefert sie praktische Tipps für kreative Methoden zur Ideenentwicklung in der Wirtschaft.
/artikel/kreativitaet-unter-druck-wie-du-und-dein-team-trotz-zeitnot-kreative-ideen-entwickelst
Kerstin Lobner | (c) Ideenflow

Die Uhr tickt, die Deadline rückt näher – und jetzt sollen du und dein Team auch noch kreative Ideen entwickeln? Klingt unmöglich, oder? Doch genau unter solchen Bedingungen kann Kreativität zur Höchstform auflaufen. Aber warum fällt es uns oft schwer, unter Druck kreativ zu denken, und wie kannst du und dein Team diese Hürde überwinden? Hier sind einige Ansätze, um den kreativen Funken auch unter Zeitnot zu entzünden.

Der Druck als Kreativitätskiller

Zunächst einmal: Kreativität braucht oft Raum. Die besten Ideen kommen, wenn man Zeit hat, Gedanken schweifen zu lassen. Wenn aber die Deadline drängt, blockiert das Gefühl von Stress oft die kreativen Prozesse. Anstatt entspannt nach Lösungen zu suchen, fühlen wir uns gehetzt und neigen dazu, auf alte Muster zurückzugreifen – nicht gerade die ideale Ausgangssituation für frische Ideen.

Lösung #1: Timeboxing – Nutze die Zeit klug

Anstatt den gesamten Prozess unter Druck zu setzen, hilft es, die Zeit in kleinere, überschaubare Blöcke zu unterteilen. Diese Technik nennt sich „Timeboxing“. Gebt jeder Phase der Ideensammlung – von der ersten Brainstorming-Runde bis zur Auswahl der besten Ideen – eine feste Zeitvorgabe. So bleibt der Fokus erhalten, ohne dass die Hektik Überhand nimmt. Ironischerweise kann eine solche Strukturierung dazu führen, dass kreative Prozesse in kürzerer Zeit effizienter ablaufen. Setzt euch z.B. ein 10-Minuten-Zeitfenster für das Brainstorming und anschließend weitere 10 Minuten, um die vielversprechendsten Ideen zu priorisieren.

Lösung #2: Kreativitätstechniken wie die 6-3-5-Methode

Eine weitere Technik, die unter Zeitdruck Wunder wirken kann, ist die „6-3-5-Methode“. Hierbei schreiben sechs Personen in fünf Minuten jeweils drei Ideen auf. Diese Ideen werden dann an den nächsten Teilnehmer:in weitergegeben, der/die darauf aufbaut oder neue Vorschläge entwickelt. Durch den schnellen, iterativen Austausch kommen nicht nur viele Ideen zusammen, sondern die Zeitvorgabe sorgt auch dafür, dass niemand zu lange über einer Idee brütet. Diese Technik fördert den Fluss und verhindert, dass der Druck lähmend wirkt.

Lösung #3: Klare Fokussierung durch präzise Fragestellungen

Unter Zeitdruck geht es darum, möglichst schnell die relevanten Ideen zu identifizieren. Je klarer und fokussierter die Fragestellung ist, desto einfacher wird es, zielgerichtet zu arbeiten. Statt „Wie können wir unser Produkt verbessern?“ könnte die Frage lauten: „Wie können wir unsere App-Nutzer schneller zum Kaufabschluss führen?“ – konkrete Aufgabenstellungen fördern schnelle, kreative Lösungsansätze.

Lösung #4: Mikro-Pausen einlegen

Kreativität unter Druck bedeutet nicht, ununterbrochen Höchstleistungen zu erbringen. Mikro-Pausen sind Gold wert. Schon fünf Minuten Abstand können das Gehirn wieder erfrischen und die Kreativität ankurbeln. Diese kurzen Pausen verhindern, dass dein Team in hektisches Denken verfällt und helfen dabei, aus einem anderen Blickwinkel auf das Problem zu schauen. Ein kurzer Spaziergang um den Block oder einfach frische Luft schnappen kann Wunder wirken.

Lösung #5: Gamification – Der spielerische Ansatz

Wenn die Stimmung im Team angespannt ist, hilft es oft, den Druck mit einem spielerischen Element aufzulockern. Eine einfache Möglichkeit: Macht aus dem Ideensammeln ein kleines Spiel. Vergesst den Ernst der Lage für einen Moment und veranstaltet z.B. einen „Pitch-Wettbewerb“, bei dem die Teammitglieder ihre verrücktesten Ideen in nur 60 Sekunden präsentieren. Diese Methode nimmt dem Team den Stress und fördert gleichzeitig unkonventionelle Lösungsansätze.

Fazit: Kreativität unter Druck ist möglich – mit den richtigen Techniken

Der Schlüssel zu Kreativität unter Zeitnot ist es, Strukturen zu schaffen, die den Prozess erleichtern, statt zusätzlichen Druck aufzubauen. Durch Timeboxing, präzise Fragestellungen und spielerische Elemente können du und dein Team auch in stressigen Situationen kreative Höchstleistungen abrufen. Der Trick liegt darin, den Druck in geordnete Bahnen zu lenken und den kreativen Fluss zu fördern, anstatt ihn zu ersticken.


Über die Gastautorin Kerstin Lobner

Kreativität prägte sie von klein auf, als Enkelin des General Managers von Faber-Castell in Irland. Während andere im Alter an Neugierde verlieren, vertiefte sie ihr Interesse an Kreativität stetig.

Nach verschiedenen Positionen im Konzern-Marketing in Branchen wie IT, Telekommunikation und Gesundheitswesen unterstützt sie heute Führungskräfte und Teams dabei, innovative Lösungen zu finden und ihr kreatives Potenzial zu entfalten.


Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag

AI Summaries

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Welche gesellschaftspolitischen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Welche wirtschaftlichen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Innovationsmanager:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Investor:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Politiker:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Was könnte das Bigger Picture von den Inhalten dieses Artikels sein?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Wer sind die relevantesten Personen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.

AI Kontextualisierung

Wer sind die relevantesten Organisationen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Autonome Fahrzeuge: AVL optimiert die Erkennung von Objekten in AI

  • Sich einfach zurück zu lehnen, anstatt selbst am Steuer auf den Verkehr achtgeben zu müssen, ist die Vision des autonomen Fahrens. So soll das Reisen für die Insassen nicht nur angenehmer werden, sondern auch sicherer als eine Person am Lenkrad sein, da zum Beispiel die menschliche Fehlerquelle des Müdewerdens nicht mehr das Fahren des Fahrzeuges beeinflusst.
  • Zugleich muss die AI noch lernen, welche Daten für die Sicherheit relevant sind und welche nicht.
  • Hier kommt das US-amerikanische Startup Deepen.AI ins Spiel, welches in einer Kooperation mit der in Graz ansässigen AVL einen Prototyp zur besseren Erkennung und Segmentierung von Objektdaten im Straßenverkehr entwickelt hat.
  • “Die Datenanalysten bereinigen Zweifel, welche die AI in Bezug auf manche Objekte hat”, erläutert Mohammad Musa, Co-Founder und CEO von Deepen.AI: “Sie helfen bei der Klassifizierung und Kalibrierung.”
  • Im Idealfall soll im Rahmen der Kooperation eine komplette “Data Intelligence Pipeline”  entstehen, welche von AVLs zahlreichen B2B-Kunden genutzt wird, um deren Daten zu annotieren und so gemeinsam die Zukunft des autonomen Fahrens zu gestalten.
  • Im Rahmen des “Safety Pool Project” sollen gemeinsam mit dem World Economic Forum quantifizierte Benchmarks und einheitliche Objektklassen definiert werden, die dann als Standards für die Branche gelten.