17.06.2024
GEGEN VERSCHWENDUNG

Wie ein Bio-Bäcker mit Data Science die Lebensmittelüberproduktion reduziert

Oftmals bleibt im Lebensmittelhandel einiges an Ware über, die dann den Weg in den Müll findet. Prognosen zu treffen, fällt aufgrund vieler Variablen den Beteiligten sehr schwer. Die Bio-Bäckerei brotsüchtig allerdings hat es in einem Projekt mit zwei Kooperationspartnern geschafft, die Lebensmittelverschwendung essentiell zu reduzieren.
/artikel/wie-ein-bio-baecker-mit-data-science-die-lebensmittelueberproduktion-reduzierte
brotsüchtig
(c) Simlinger - (v.l.) brotsüchtig-Gründer Oliver Raferzeder, Alois Keplinger, Projektberater Innovationsmanagement der WKOÖ, brotsüchtig-Gründer Stefan Faschinger, Volkmar Wieser, Area Manager Data Science bei SCCH.

Rund 500 Kilo Bio-Mehl verarbeitet die Bio-Bäckerei brotsüchtig täglich zu Brot und Gebäck. Dabei wird die Produktionslogistik zum Drahtseilakt. Einerseits sollen die Kunden bis zum Ladenschluss aus dem gesamten Sortiment wählen können. Andererseits soll danach möglichst wenig Brot und Gebäck übrigbleiben.

brotsüchtig: “Rettung nur die zweitbeste Lösung”

“Denn Lebensmittelrettung ist nur die zweitbeste Lösung”, sagt brotsüchtig-Gründer und -Geschäftsführer Oliver Raferzeder. Die beste wäre, exakt so viel zu backen, wie verkauft wird. Um diesem Ziel möglichst nahezukommen, hat das Innovationsmanagement der WKO Oberösterreich für brotsüchtig ein KI-Projekt beim EU-Digitalisierungsprogramm “Test before Invest” eingereicht. In diesem hat das Software Competence Center Hagenberg (SCCH) unter anderem Verkaufs-, Produktions-, Kalender-, Wetter- und Veranstaltungsdaten aufbereitet, in einem Dashboard sichtbar gemacht und so die Produktionsplanung verbessert. Die Retouren-Quote konnte so um 20 Prozent reduziert werden.

“Wir verlieren doppelt, wenn wir zu viel Ware backen”, erklärt Stefan Faschinger, ebenfalls Mitgründer von brotsüchtig, das Dilemma der Produktionsplanung. “Wir verlieren die kostbare Arbeitszeit unserer Bäckerinnen und Bäcker. Und wir verlieren kostbare Rohstoffe.”

Ein schicksalhaftes Treffen

So sind die bei brotsüchtig verwendeten bio-Rohstoffe generell um 15 bis 20 Prozent teurer als herkömmliche – Mohn in Bioqualität sei sogar doppelt so teuer. Deswegen investiert der Co-Founder bis zu zwei Stunden täglich in die Produktionsplanung für den nächsten Tag, erzählt Raferzeder.

Dies mühsamen Umstand teilte Faschinger dem Projektberater Alois Keplinger vom Innovationsmanagement der WKOÖ bei einer zufälligen Begegnung im Verkaufsraum mit. Daraus entwickelte sich ein gemeinsames Forschungsprojekt. Keplinger stellte folglich einen Förderantrag bei “Test before Invest”, das Digitalisierungs-Projekte bis zu einem Volumen von 40.000 Euro zu 100 Prozent aus Mitteln der Europäischen Union und der Forschungs-Förderungs-Gesellschaft FFG finanziert. Als Partner für die nötige Daten-Wissenschaft holte man das SCCH an Bord.

Data Science als Strategiegeber

“Das Ziel der Daten-Wissenschaft ist es, oft zusammenhanglos wirkendes Datenmaterial so aufzubereiten, dass man daraus konkretes Wissen und Strategien ableiten kann”, so Keplinger weiter. “Mit Data-Science lassen sich in praktisch allen Branchen Effizienzsteigerungen erzielen oder bessere Entscheidungen treffen.”

Bei brotsüchtig hängen die Verkaufszahlen als wichtigste Datenbasis von einer Unzahl an Faktoren ab: “Dabei spielen die Jahreszeit, das Wetter, der Wochentag, die generelle Frequenz in der Stadt aber auch Veranstaltungen rund um unsere Shops eine große, nur schwer zu kalkulierende Rolle”, skizziert Raferzeder die produktionslogistische Herausforderung.

So hänge auch das Kaufverhalten stark davon ab, ob das Wetter zum Schlendern in der Stadt einlade, zu große Hitze oder Regen die Kunden vertreibe, ob Wochenendeinkäufe anstehen oder eine öffentliche Veranstaltung die Passantenfrequenz beeinflusst.

brotsüchtig: Daten statt Bauchgefühl

“All diese Faktoren haben wir immer sehr intensiv beobachtet und versucht, daraus Schlüsse zu ziehen”, erzählt Raferzeder. Das sei zwar meist ganz gut gelungen, war aber extrem zeitintensiv und habe vor allem auf seinem eigenen Bauchgefühl beruht. Dieses sollte durch eine wissenschaftlich fundierte Basis für die Produktionsplanung in der Backstube ergänzt – oder im Idealfall ersetzt – werden. “So wollten wir etwa wissen, bei welchem Wetter wir mehr „Drahdiwaberl“ (Anm.: veganes Brot) verkaufen und welche Faktoren dafür noch verantwortlich sind.”

Mit seiner Kernkompetenz, Daten in Wissen umzuwandeln, war bei diesem Projekt das SCCH ein Idealkandidat für dieses Digitalisierungs-Projekt. Für die Aufgabenstellung, mittels Data Science aus dem vorhandenen Datenmaterial möglichst treffsichere Vorhersagen für die Produktion zu machen, konnte sich Area Manager Data Science bei SCCH Volkmar Wieser vor allem auf umfassende Verkaufsdaten stützen.

Planungsaufwand halbiert

“Uns lagen für die vier brotsüchtig-Shops in Linz (Anm.: dort zwei), Steyregg und Wels ebenso umfassende wie detaillierte Verkaufsstatistiken vor”, erklärt er. Nach dem Datenexport aus den Kassensystemen sowie entsprechender Aufbereitung und Visualisierung konnte dann die Verkaufsdynamik für jeden einzelnen Artikel zu bestimmten Uhrzeiten an allen Tagen in jedem einzelnen Shop klar und übersichtlich dargestellt werden.

“Wir haben auch noch Wetterdaten und Feiertage in die Analyse einfließen lassen, um sichtbar zu machen, wie sich diese im Kaufverhalten bemerkbar machen”, so Wieser weiter. Mit dem Ergebnis, dass brotsüchtig-Chef Faschinger auf einem Dashbord jederzeit alle für die Produktionsplanung nötigen Daten tagesaktuell aufrufen und mit Referenzwerten vergleichen kann.

“Diese Klarheit und Übersichtlichkeit der Daten erleichtert die Produktionsplanung enorm”, sagt er. “Mein Planungsaufwand hat sich halbiert, die Präzision der Vorhersage gleichzeitig wesentlich verbessert. Jetzt haben wir um ein Fünftel weniger Retourware als zuvor.”

Deine ungelesenen Artikel:
16.12.2024

250 Mio. Dollar Investment für US-Startup von TU-Wien-Absolventen – Bewertung bei über 2 Milliarden

Ramin Hasani und Mathias Lechner haben eine Wiener Vergangenheit und konnten sich nun in Boston für ihr MIT-Spin-off Liquid AI eine gewaltige Investition sichern.
/artikel/250-mio-dollar-investment-fuer-us-startup-von-tu-wien-absolventen-bewertung-bei-ueber-2-milliarden
16.12.2024

250 Mio. Dollar Investment für US-Startup von TU-Wien-Absolventen – Bewertung bei über 2 Milliarden

Ramin Hasani und Mathias Lechner haben eine Wiener Vergangenheit und konnten sich nun in Boston für ihr MIT-Spin-off Liquid AI eine gewaltige Investition sichern.
/artikel/250-mio-dollar-investment-fuer-us-startup-von-tu-wien-absolventen-bewertung-bei-ueber-2-milliarden
(c) Liquid AI - (v.l.) Mathias Ledhner, Eva Rus, Alexander Amini und Ramin Hasani von Liquid AI.

Liquid AI CEO Ramin Hasani war von 2016 bis 2020 “Machine Learning Researcher” an der TU Wien; sein CTO Mathias Lechner machte von 2018 bis 2022 am “Institute of Science and Technology Austria (ISTA) seinen PhD – davor in der österreichischen Hauptstadt seinen Master, ebenfalls an der Technischen Universität.

Liquid AI: Weniger Daten und Rechenleistung nötig

Nun vermelden beide ein 250 Millionen US-Dollar Investment für ihr Bostoner MIT-Spin-off (Liquid AI hat im Vorjahr bereits rund 46,6 Millionen US-Dollar an Startkapital erhalten): “Diese Finanzierung wird uns dabei helfen, die Entwicklung, Skalierung und Bereitstellung von ‘Liquid Foundation Models’ (LFMs: Allzweck-KI-Modelle, die weniger Daten und Rechenleistung benötigen) zu beschleunigen, unseren leichtgewichtigen, universell einsetzbaren KI-Modellen, die private, effiziente und zuverlässige KI auf Unternehmensniveau für alle ermöglichen”, teilen sie per Blogeintrag mit.

Das Ziel von Liquid AI, dessen Bewertung nun laut Bloomberg bei über zwei Milliarden US-Dollar liegt, ist es, das leistungsfähigste und effizienteste “KI-System in jeder Größenordnung” zu entwickeln.

“Wir sind stolz darauf, dass unsere neuen, branchenführenden Partner unserer Mission vertrauen; gemeinsam wollen wir souveräne KI-Erfahrungen für Unternehmen und Nutzer freisetzen”, sagt Hasani.

Skalierbarkeit

Seit der Gründung des KI-Startups hat das Duo daran gearbeitet, zu beweisen, dass ihre Wissenschaft und Technologie skalierbar sei: “Wir haben unsere textbasierten Modelle veröffentlicht, multimodale LFMs angekündigt und begonnen, unsere KI-Produkte mit wichtigen Partnern auf dem Markt zu testen, um ihre Wirkung in der Praxis zu demonstrieren”, heißt es weiter.

In der nächsten Phase möchte Liquid AI die Series-A nutzen, um ihre Recheninfrastruktur zu skalieren, die Produktbereitstellung im Edge- und On-Premise-Bereich zu beschleunigen, z. B. LFM-Inferenz- und Feinabstimmungs-Stacks, und um ihre KI-Angebote über Partnerschaften einem breiteren Publikum zugänglich zu machen.

Liquid AI: Vorteile ausdehnen

“Wir werden unsere KI-Produkte in geschäftskritische Workflows in vielen Bereichen wie Unterhaltungselektronik, Telekommunikation, Finanzdienstleistungen, E-Commerce und Biotechnologie integrieren”, so das Team weiter. “Die Finanzierung wird auch die wissenschaftliche und technologische Entwicklung von Liquid AI beschleunigen und die Vorteile von LFMs auf mehr Modellgrößen und Datenmodalitäten ausdehnen.”

Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag

AI Summaries

Wie ein Bio-Bäcker mit Data Science die Lebensmittelüberproduktion reduziert

AI Kontextualisierung

Welche gesellschaftspolitischen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Wie ein Bio-Bäcker mit Data Science die Lebensmittelüberproduktion reduziert

AI Kontextualisierung

Welche wirtschaftlichen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Wie ein Bio-Bäcker mit Data Science die Lebensmittelüberproduktion reduziert

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Innovationsmanager:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Wie ein Bio-Bäcker mit Data Science die Lebensmittelüberproduktion reduziert

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Investor:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Wie ein Bio-Bäcker mit Data Science die Lebensmittelüberproduktion reduziert

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Politiker:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Wie ein Bio-Bäcker mit Data Science die Lebensmittelüberproduktion reduziert

AI Kontextualisierung

Was könnte das Bigger Picture von den Inhalten dieses Artikels sein?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Wie ein Bio-Bäcker mit Data Science die Lebensmittelüberproduktion reduziert

AI Kontextualisierung

Wer sind die relevantesten Personen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Wie ein Bio-Bäcker mit Data Science die Lebensmittelüberproduktion reduziert

AI Kontextualisierung

Wer sind die relevantesten Organisationen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Wie ein Bio-Bäcker mit Data Science die Lebensmittelüberproduktion reduziert