17.06.2024
GEGEN VERSCHWENDUNG

Wie ein Bio-Bäcker mit Data Science die Lebensmittelüberproduktion reduziert

Oftmals bleibt im Lebensmittelhandel einiges an Ware über, die dann den Weg in den Müll findet. Prognosen zu treffen, fällt aufgrund vieler Variablen den Beteiligten sehr schwer. Die Bio-Bäckerei brotsüchtig allerdings hat es in einem Projekt mit zwei Kooperationspartnern geschafft, die Lebensmittelverschwendung essentiell zu reduzieren.
/artikel/wie-ein-bio-baecker-mit-data-science-die-lebensmittelueberproduktion-reduzierte
brotsüchtig
(c) Simlinger - (v.l.) brotsüchtig-Gründer Oliver Raferzeder, Alois Keplinger, Projektberater Innovationsmanagement der WKOÖ, brotsüchtig-Gründer Stefan Faschinger, Volkmar Wieser, Area Manager Data Science bei SCCH.

Rund 500 Kilo Bio-Mehl verarbeitet die Bio-Bäckerei brotsüchtig täglich zu Brot und Gebäck. Dabei wird die Produktionslogistik zum Drahtseilakt. Einerseits sollen die Kunden bis zum Ladenschluss aus dem gesamten Sortiment wählen können. Andererseits soll danach möglichst wenig Brot und Gebäck übrigbleiben.

brotsüchtig: “Rettung nur die zweitbeste Lösung”

“Denn Lebensmittelrettung ist nur die zweitbeste Lösung”, sagt brotsüchtig-Gründer und -Geschäftsführer Oliver Raferzeder. Die beste wäre, exakt so viel zu backen, wie verkauft wird. Um diesem Ziel möglichst nahezukommen, hat das Innovationsmanagement der WKO Oberösterreich für brotsüchtig ein KI-Projekt beim EU-Digitalisierungsprogramm “Test before Invest” eingereicht. In diesem hat das Software Competence Center Hagenberg (SCCH) unter anderem Verkaufs-, Produktions-, Kalender-, Wetter- und Veranstaltungsdaten aufbereitet, in einem Dashboard sichtbar gemacht und so die Produktionsplanung verbessert. Die Retouren-Quote konnte so um 20 Prozent reduziert werden.

“Wir verlieren doppelt, wenn wir zu viel Ware backen”, erklärt Stefan Faschinger, ebenfalls Mitgründer von brotsüchtig, das Dilemma der Produktionsplanung. “Wir verlieren die kostbare Arbeitszeit unserer Bäckerinnen und Bäcker. Und wir verlieren kostbare Rohstoffe.”

Ein schicksalhaftes Treffen

So sind die bei brotsüchtig verwendeten bio-Rohstoffe generell um 15 bis 20 Prozent teurer als herkömmliche – Mohn in Bioqualität sei sogar doppelt so teuer. Deswegen investiert der Co-Founder bis zu zwei Stunden täglich in die Produktionsplanung für den nächsten Tag, erzählt Raferzeder.

Dies mühsamen Umstand teilte Faschinger dem Projektberater Alois Keplinger vom Innovationsmanagement der WKOÖ bei einer zufälligen Begegnung im Verkaufsraum mit. Daraus entwickelte sich ein gemeinsames Forschungsprojekt. Keplinger stellte folglich einen Förderantrag bei “Test before Invest”, das Digitalisierungs-Projekte bis zu einem Volumen von 40.000 Euro zu 100 Prozent aus Mitteln der Europäischen Union und der Forschungs-Förderungs-Gesellschaft FFG finanziert. Als Partner für die nötige Daten-Wissenschaft holte man das SCCH an Bord.

Data Science als Strategiegeber

“Das Ziel der Daten-Wissenschaft ist es, oft zusammenhanglos wirkendes Datenmaterial so aufzubereiten, dass man daraus konkretes Wissen und Strategien ableiten kann”, so Keplinger weiter. “Mit Data-Science lassen sich in praktisch allen Branchen Effizienzsteigerungen erzielen oder bessere Entscheidungen treffen.”

Bei brotsüchtig hängen die Verkaufszahlen als wichtigste Datenbasis von einer Unzahl an Faktoren ab: “Dabei spielen die Jahreszeit, das Wetter, der Wochentag, die generelle Frequenz in der Stadt aber auch Veranstaltungen rund um unsere Shops eine große, nur schwer zu kalkulierende Rolle”, skizziert Raferzeder die produktionslogistische Herausforderung.

So hänge auch das Kaufverhalten stark davon ab, ob das Wetter zum Schlendern in der Stadt einlade, zu große Hitze oder Regen die Kunden vertreibe, ob Wochenendeinkäufe anstehen oder eine öffentliche Veranstaltung die Passantenfrequenz beeinflusst.

brotsüchtig: Daten statt Bauchgefühl

“All diese Faktoren haben wir immer sehr intensiv beobachtet und versucht, daraus Schlüsse zu ziehen”, erzählt Raferzeder. Das sei zwar meist ganz gut gelungen, war aber extrem zeitintensiv und habe vor allem auf seinem eigenen Bauchgefühl beruht. Dieses sollte durch eine wissenschaftlich fundierte Basis für die Produktionsplanung in der Backstube ergänzt – oder im Idealfall ersetzt – werden. “So wollten wir etwa wissen, bei welchem Wetter wir mehr „Drahdiwaberl“ (Anm.: veganes Brot) verkaufen und welche Faktoren dafür noch verantwortlich sind.”

Mit seiner Kernkompetenz, Daten in Wissen umzuwandeln, war bei diesem Projekt das SCCH ein Idealkandidat für dieses Digitalisierungs-Projekt. Für die Aufgabenstellung, mittels Data Science aus dem vorhandenen Datenmaterial möglichst treffsichere Vorhersagen für die Produktion zu machen, konnte sich Area Manager Data Science bei SCCH Volkmar Wieser vor allem auf umfassende Verkaufsdaten stützen.

Planungsaufwand halbiert

“Uns lagen für die vier brotsüchtig-Shops in Linz (Anm.: dort zwei), Steyregg und Wels ebenso umfassende wie detaillierte Verkaufsstatistiken vor”, erklärt er. Nach dem Datenexport aus den Kassensystemen sowie entsprechender Aufbereitung und Visualisierung konnte dann die Verkaufsdynamik für jeden einzelnen Artikel zu bestimmten Uhrzeiten an allen Tagen in jedem einzelnen Shop klar und übersichtlich dargestellt werden.

“Wir haben auch noch Wetterdaten und Feiertage in die Analyse einfließen lassen, um sichtbar zu machen, wie sich diese im Kaufverhalten bemerkbar machen”, so Wieser weiter. Mit dem Ergebnis, dass brotsüchtig-Chef Faschinger auf einem Dashbord jederzeit alle für die Produktionsplanung nötigen Daten tagesaktuell aufrufen und mit Referenzwerten vergleichen kann.

“Diese Klarheit und Übersichtlichkeit der Daten erleichtert die Produktionsplanung enorm”, sagt er. “Mein Planungsaufwand hat sich halbiert, die Präzision der Vorhersage gleichzeitig wesentlich verbessert. Jetzt haben wir um ein Fünftel weniger Retourware als zuvor.”

Deine ungelesenen Artikel:
16.12.2024

“Die Zeit des Zuwartens ist vorbei”

Nachlese. Wo steht die österreichische Wirtschaft bei künstlicher Intelligenz zwei Jahre nach Erscheinen von ChatGPT? Dies diskutieren Doris Lippert von Microsoft und Thomas Steirer von Nagarro in der ersten Folge der neuen brutkasten-Serie "No Hype KI".
/artikel/no-hype-ki-folge-1-nachlese
16.12.2024

“Die Zeit des Zuwartens ist vorbei”

Nachlese. Wo steht die österreichische Wirtschaft bei künstlicher Intelligenz zwei Jahre nach Erscheinen von ChatGPT? Dies diskutieren Doris Lippert von Microsoft und Thomas Steirer von Nagarro in der ersten Folge der neuen brutkasten-Serie "No Hype KI".
/artikel/no-hype-ki-folge-1-nachlese
Doris Lippert (Microsoft | Director Global Partner Solutions und Mitglied der Geschäftsleitung) und Thomas Steirer (Nagarro | Chief Technology Officer)
Doris Lippert (Microsoft | Director Global Partner Solutions und Mitglied der Geschäftsleitung) und Thomas Steirer (Nagarro | Chief Technology Officer) | Foto: brutkasten

“No Hype KI” wird unterstützt von CANCOM Austria, IBM, ITSV, Microsoft, Nagarro, Red Hat und Universität Graz


Mit der neuen multimedialen Serie “No Hype KI” wollen wir eine Bestandsaufnahme zu künstlicher Intelligenz in der österreichischen Wirtschaft liefern. In der ersten Folge diskutieren Doris Lippert, Director Global Partner Solutions und Mitglied der Geschäftsleitung bei Microsoft Österreich, und Thomas Steirer, Chief Technology Officer bei Nagarro, über den Status Quo zwei Jahre nach Erscheinen von ChatGPT.

Du willst bei "No Hype KI" am Laufenden bleiben?

Trag dich hier ein und du bekommst jede Folge direkt in die Inbox!

„Das war ein richtiger Hype. Nach wenigen Tagen hatte ChatGPT über eine Million Nutzer”, erinnert sich Lippert an den Start des OpenAI-Chatbots Ende 2022. Seither habe sich aber viel geändert: “Heute ist das gar kein Hype mehr, sondern Realität“, sagt Lippert. Die Technologie habe sich längst in den Alltag integriert, kaum jemand spreche noch davon, dass er sein Smartphone über eine „KI-Anwendung“ entsperre oder sein Auto mithilfe von KI einparke: “Wenn es im Alltag angekommen ist, sagt keiner mehr KI-Lösung dazu”.

Auch Thomas Steirer erinnert sich an den Moment, als ChatGPT erschien: „Für mich war das ein richtiger Flashback. Ich habe vor vielen Jahren KI studiert und dann lange darauf gewartet, dass wirklich alltagstaugliche Lösungen kommen. Mit ChatGPT war dann klar: Jetzt sind wir wirklich da.“ Er sieht in dieser Entwicklung einen entscheidenden Schritt, der KI aus der reinen Forschungsecke in den aktiven, spürbaren Endnutzer-Bereich gebracht habe.

Von erster Begeisterung zu realistischen Erwartungen

Anfangs herrschte in Unternehmen noch ein gewisser Aktionismus: „Den Satz ‘Wir müssen irgendwas mit KI machen’ habe ich sehr, sehr oft gehört“, meint Steirer. Inzwischen habe sich die Erwartungshaltung realistischer entwickelt. Unternehmen gingen nun strategischer vor, untersuchten konkrete Use Cases und setzten auf institutionalisierte Strukturen – etwa durch sogenannte “Centers of Excellence” – um KI langfristig zu integrieren. „Wir sehen, dass jetzt fast jedes Unternehmen in Österreich KI-Initiativen hat“, sagt Lippert. „Diese Anlaufkurve hat eine Zeit lang gedauert, aber jetzt sehen wir viele reale Use-Cases und wir brauchen uns als Land nicht verstecken.“

Spar, Strabag, Uniqa: Use-Cases aus der österreichischen Wirtschaft

Lippert nennt etwa den Lebensmittelhändler Spar, der mithilfe von KI sein Obst- und Gemüsesortiment auf Basis von Kaufverhalten, Wetterdaten und Rabatten punktgenau steuert. Weniger Verschwendung, bessere Lieferkette: “Lieferkettenoptimierung ist ein Purpose-Driven-Use-Case, der international sehr viel Aufmerksamkeit bekommt und der sich übrigens über alle Branchen repliziert”, erläutert die Microsoft-Expertin.

Auch die Baubranche hat Anwendungsfälle vorzuweisen: Bei Strabag wird mittels KI die Risikobewertung von Baustellen verbessert, indem historische Daten zum Bauträger, zu Lieferanten und zum Bauteam analysiert werden.

Im Versicherungsbereich hat die UNIQA mithilfe eines KI-basierten „Tarif-Bots“ den Zeitaufwand für Tarifauskünfte um 50 Prozent reduziert, was die Mitarbeiter:innen von repetitiven Tätigkeiten entlastet und ihnen mehr Spielraum für sinnstiftende Tätigkeiten lässt.

Nicht immer geht es aber um Effizienzsteigerung. Ein KI-Projekt einer anderen Art wurde kürzlich bei der jüngsten Microsoft-Konferenz Ignite präsentiert: Der Hera Space Companion (brutkasten berichtete). Gemeinsam mit der ESA, Terra Mater und dem österreichischen Startup Impact.ai wurde ein digitaler Space Companion entwickelt, mit dem sich Nutzer in Echtzeit über Weltraummissionen austauschen können. „Das macht Wissenschaft zum ersten Mal wirklich greifbar“, sagt Lippert. „Meine Kinder haben am Wochenende die Planeten im Gespräch mit dem Space Companion gelernt.“

Herausforderungen: Infrastruktur, Daten und Sicherheit

Auch wenn die genannten Use Cases Erfolgsbeispiele zeigen, sind Unternehmen, die KI einsetzen wollen, klarerweise auch mit Herausforderungen konfrontiert. Diese unterscheiden sich je nachdem, wie weit die „KI-Maturität“ der Unternehmen fortgeschritten sei, erläutert Lippert. Für jene, die schon Use-.Cases erprobt haben, gehe es nun um den großflächigen Rollout. Dabei offenbaren sich klassische Herausforderungen: „Integration in Legacy-Systeme, Datenstrategie, Datenarchitektur, Sicherheit – all das darf man nicht unterschätzen“, sagt Lippert.

“Eine große Herausforderung für Unternehmen ist auch die Frage: Wer sind wir überhaupt?”, ergänzt Steirer. Unternehmen müssten sich fragen, ob sie eine KI-Firma seien, ein Software-Entwicklungsunternehmen oder ein reines Fachunternehmen. Daran anschließend ergeben sich dann Folgefragen: „Muss ich selbst KI-Modelle trainieren oder kann ich auf bestehende Plattformen aufsetzen? Was ist meine langfristige Strategie?“ Er sieht in dieser Phase den Übergang von kleinen Experimenten über breite Implementierung bis hin zur Institutionalisierung von KI im Unternehmen.

Langfristiges Potenzial heben

Langfristig stehen die Zeichen stehen auf Wachstum, sind sich Lippert und Steirer einig. „Wir überschätzen oft den kurzfristigen Impact und unterschätzen den langfristigen“, sagt die Microsoft-Expertin. Sie verweist auf eine im Juni präsentierte Studie, wonach KI-gestützte Ökosysteme das Bruttoinlandsprodukt Österreichs deutlich steigern könnten – und zwar um etwa 18 Prozent (brutkasten berichtete). „Das wäre wie ein zehntes Bundesland, nach Wien wäre es dann das wirtschaftsstärkste“, so Lippert. „Wir müssen uns klar machen, dass KI eine Allzwecktechnologie wie Elektrizität oder das Internet ist.“

Auch Steirer ist überzeugt, dass sich für heimische Unternehmen massive Chancen eröffnen: “Ich glaube auch, dass wir einfach massiv unterschätzen, was das für einen langfristigen Impact haben wird”. Der Appell des Nagarro-Experten: „Es geht jetzt wirklich darum, nicht mehr zuzuwarten, sondern sich mit KI auseinanderzusetzen, umzusetzen und Wert zu stiften.“


Folge nachsehen: No Hype KI – wo stehen wir nach zwei Jahren ChatGPT?


Die Serie wird von brutkasten in redaktioneller Unabhängigkeit mit finanzieller Unterstützung unserer Partner:innen produziert.

Die Partner von No Hype KI
Die Partner von No Hype KI
Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag

AI Summaries

Wie ein Bio-Bäcker mit Data Science die Lebensmittelüberproduktion reduziert

AI Kontextualisierung

Welche gesellschaftspolitischen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Wie ein Bio-Bäcker mit Data Science die Lebensmittelüberproduktion reduziert

AI Kontextualisierung

Welche wirtschaftlichen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Wie ein Bio-Bäcker mit Data Science die Lebensmittelüberproduktion reduziert

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Innovationsmanager:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Wie ein Bio-Bäcker mit Data Science die Lebensmittelüberproduktion reduziert

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Investor:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Wie ein Bio-Bäcker mit Data Science die Lebensmittelüberproduktion reduziert

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Politiker:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Wie ein Bio-Bäcker mit Data Science die Lebensmittelüberproduktion reduziert

AI Kontextualisierung

Was könnte das Bigger Picture von den Inhalten dieses Artikels sein?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Wie ein Bio-Bäcker mit Data Science die Lebensmittelüberproduktion reduziert

AI Kontextualisierung

Wer sind die relevantesten Personen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Wie ein Bio-Bäcker mit Data Science die Lebensmittelüberproduktion reduziert

AI Kontextualisierung

Wer sind die relevantesten Organisationen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Wie ein Bio-Bäcker mit Data Science die Lebensmittelüberproduktion reduziert