29.07.2024
HEALTH

Predicting Health: Grazer HealthTech erkennt vermeidbare Komplikationen im Krankenhaus

Das Grazer Startup Predicting Health führt Risikobewertung in Krankenhäusern durch. Um das Personal zu unterstützen, frühzeitig potentielle Komplikationen zu erkennen, es zu entlasten und eine finanzielle Mehrbelastung für Spitäler zu verhindern.
/artikel/predicting-health-grazer-healthtech-erkennt-vermeidbare-komplikationen-im-krankenhaus
Predicting Health, Risiko Krankenhaus,
(c) Predicting Health - Das Predicting Health-Team.

Die Geschichte von Predicting Health begann als Data-Science-Projekt innerhalb der steirischen Krankenanstalten (KAGes). Die Idee entstand aus der engen Zusammenarbeit zwischen Datenwissenschaftler:innen und medizinischem Personal, um den Klinikalltag zu entlasten und die Patientensicherheit zu erhöhen. Ursprünglich sollte die effiziente Nutzung vorhandener Krankenhausdaten “bloß” die klinische Praxis verbessern.

Predicting Health: Wendepunkt

Ein Wendepunkt kam aber, als die Founder Diether Kramer – der die Data Science Abteilung der KAGes aufgebaut hat – und Werner Leodolter (Anm.: verstarb leider 2022 bei einem Autounfall in Island) erkannten, dass bis zu zehn Prozent der Krankenhauspatient:innen vermeidbare Komplikationen erleiden.

Bestehende Scoring-Modelle reichten nicht aus, um diese Risiken zuverlässig vorherzusagen. Also musste eine Lösung her: ein Machine Learning-basiertes Tool, das komplexe Zusammenhänge in Patient:innen-Daten erkennt und frühzeitig auf Risiken hinweist. So wurde das “Personalised Risk Tool” geboren, dessen Algorithmen mit Millionen realer Patientendaten trainiert wurden, um eine hohe Vorhersagegenauigkeit zu erreichen.

Da KAGes das Tool nicht selbst vertreiben konnte, wurde 2019 die Predicting Health GmbH gegründet, um es in die breite Anwendung zu bringen.

“Ein weiterer Schlüsselmoment war die Partnerschaft mit der Vinzenzgruppe (Anm.: eine Krankenhausbeteiligungs und Management GmbH), die zu einer signifikanten Reduktion von Pflegekosten und einer Verbesserung der Patientensicherheit führte”, erklärt Jakob Pieber, Development Manager der PH Predicting Health GmbH.

Zertifiziert

Heute bietet das Startup ein zertifiziertes Medizinprodukt an, das Krankenhauspersonal unterstützen und die Patientensicherheit durch präzise, automatisierte Risikoprognosen steigern soll. Mit dem Ziel, die präventive Früherkennung vollständig zu automatisieren und so das Gesundheitssystem nachhaltig zu entlasten.

Zu den wichtigsten USPs von Prediction Health zähle die Herkunft aus der Krankenhauspraxis, so der Development-Manager weiter: “Unser ‘Personalised Risk Tool’ wurde in enger Zusammenarbeit mit Ärzten und Pflegekräften entwickelt, um den tatsächlichen Bedürfnissen und Herausforderungen des Klinikalltags gerecht zu werden”, sagt Pieber.

Und führt aus: “Diese praxisorientierte Entwicklung stellt sicher, dass unser Produkt nicht nur den Arbeitsablauf unterstützt, sondern ihn tatsächlich erleichtert. Funktionen und Benutzeroberflächen sind intuitiv und effizient gestaltet, basierend auf dem direkten Feedback des medizinischen Personals. Unsere Algorithmen bieten eine außergewöhnliche Vorhersagequalität, da sie mit umfangreichen und vielfältigen Datensätzen realer Patienten trainiert wurden. Dies ermöglicht eine hohe Genauigkeit bei der Risikoprognose, sodass medizinisches Personal frühzeitig potentielle Komplikationen erkennen und Maßnahmen ergreifen kann.”

Predicting Health mit SaaS-Ansatz

Das Geschäftsmodell des HealthTechs basiert auf einem Software-as-a-Service (SaaS)-Ansatz: Krankenhäuser zahlen eine Gebühr pro Patient:in, dessen oder deren Daten durch das “Personalised Risk Tool” analysiert werden. Diese flexible und skalierbare Preisstruktur ermögliche es, den spezifischen Bedürfnissen von Krankenhäusern unterschiedlicher Größe gerecht zu werden.

“Für die Implementierung und Kalibrierung unseres Tools in den bestehenden Krankenhausinformationssystemen (KIS) erheben wir eine einmalige Einrichtungsgebühr”, präzisiert Pieber. “Diese umfasst die Integration, Konfiguration und Schulung des medizinischen Personals, um eine reibungslose und effiziente Nutzung des Tools sicherzustellen. Diese Kombination aus laufenden Gebühren pro Patient:in und einmaligen Einrichtungsgebühren gewährleistet eine nachhaltige und anpassungsfähige Lösung für Krankenhäuser jeder Größe, während wir gleichzeitig kontinuierliche Unterstützung und Verbesserungen bieten können.”

Dazu muss man wissen, dass im Krankenhausalltag die erwähnten zehn Prozent der Patient:innen während ihres stationären Aufenthaltes eine ungeplante Komplikation erleiden, wie etwa Delir (Anm.: fluktuierende Störung der Aufmerksamkeit, der Kognition und des Bewusstseinsniveaus), einen Sturz oder eine durch eine nicht erkannte Schluckstörung verursachte Lungenentzündung.

Dadurch werde nicht nur die Gesundheit der Patient:innen beeinträchtigt, sondern auch die Aufenthaltsdauer erhöht, das Personal belastet und nicht zuletzt eine erhebliche finanzielle Mehrbelastung für die Krankenhausträger erzeugt.

Die geschätzten Kosten innerhalb der EU liegen bei ca. 24 Milliarden Euro im Jahr, wobei laut dem Grazer Team mindestens 40 Prozent dieser Komplikationen vermeidbar wären, wenn rechtzeitig vorbeugende Maßnahmen ergriffen werden würden.

“Keine zusätzlichen Daten”

“Da man diese aber nicht ziellos über alle Patienten hinweg anwenden kann, ist es wichtig, gefährdete Patienten rechtzeitig zu erkennen”, sagt Pieber. “Wir nutzen bestehende Daten aus den Krankenhausinformationssystemen und anderen Quellen, sodass keine zusätzlichen Daten erfasst werden müssen.”

Dabei basieren die Berechnungen des Tools auf bis zu 1.300 Parametern, was eine sehr präzise Risikoeinschätzung ermögliche.

“Wenn ein Risikopatient identifiziert wird, erscheint ein Warnsymbol im KIS”, erklärt Pieber weiter. “Möchte das Personal wissen, warum ein Patient als gefährdet eingestuft wurde, kann es mit einem Klick unsere explainable AI-Komponente, das ‘Personalised Risk Tool’, aufrufen. Hier werden alle Faktoren, die zur Risikoeinschätzung geführt haben, übersichtlich aufgelistet. Diese transparente und datenbasierte Herangehensweise unterstützt nicht nur die klinische Entscheidungsfindung, sondern stärkt auch das Vertrauen des Personals in die Technologie und trägt wesentlich zur Verbesserung der Patientensicherheit bei.”

Im Detail berechnet das Tool von Predicting Health Wahrscheinlichkeiten für verschiedene Risiken anhand einer Kombination mehrerer Machine-Learning-Algorithmen. Diese Algorithmen sind in der Lage, komplexe und nicht-lineare Zusammenhänge in Patientendaten zu erkennen und präzise Risikoprognosen zu erstellen.

“Durch das Training mit umfangreichen Datensätzen realer Patient:innen erzielen wir eine außergewöhnliche Vorhersagequalität”, erklärt Pieber. “Es ist wichtig zu betonen, dass unser Tool keine Diagnosen stellt. Stattdessen unterstützt es das medizinische Personal, indem es entscheidungsrelevante Informationen leicht zugänglich und verständlich aufbereitet.”

Predicting Health erhielt 2023 die AWS Digital Health PreSeed-Finanzierung. Derzeit befindet man sich in Gesprächen mit Investoren für die erste Seed-Finanzierungsrunde. Ein weiterer Fokus liegt auf dem Markteintritt in Deutschland.

Predicting Health: Erste POCs mit Krankenhäusern dieses Jahr

“Wir sind bereits mit mehreren Krankenhäusern im Gespräch und planen, noch in diesem Jahr mit den ersten Proof-of-Concepts (POCs) zu starten”, so Pieber. “Auch in Österreich konnten wir dieses Jahr zusätzliche Kunden gewinnen.”

Weiters führt das HealthTech Machbarkeitsstudien außerhalb des DACH-Raums durch, insbesondere in Ungarn, Tschechien und Südamerika. Diese Studien sollen evaluieren, wie gut die eigenen Algorithmen in verschiedenen Sprach- und Kulturkontexten funktionieren.

“Zusätzlich entwickeln wir neue Module, für andere Komplikationen. Zusammen mit Partnern arbeiten wir auch daran, die Software in existierende Healthcare Cloud-Plattformen einzubinden”, erklärt Pieber. “Unser langfristiges Ziel ist es, der ‘Glatteiswarner’ für alle Komplikationen im Krankenhausalltag zu sein. Wir glauben, dass Systeme wie unseres in Zukunft obligatorisch sein werden, da sie mit minimalem Aufwand die Patientensicherheit erhöhen und sowohl Personal als auch Budget entlasten können.”

Deine ungelesenen Artikel:
20.12.2024

SpaceTech mit Kärntner Co-Founder kooperiert mit Deutscher Raumfahrtagentur

Das Münchner SpaceTech-Startup OroraTech gab den Abschluss eines mehrjährigen Vertrags mit der Deutschen Raumfahrtagentur (DLR) bekannt. Ziel der Partnerschaft ist es, Wissenschaftler:innen, Forschungseinrichtungen und weiteren Behörden wichtige Wärmedaten bereitzustellen.
/artikel/ororatech-spacetech-mit-kaerntner-co-founder-kooperiert-mit-deutscher-raumfahrtagentur
20.12.2024

SpaceTech mit Kärntner Co-Founder kooperiert mit Deutscher Raumfahrtagentur

Das Münchner SpaceTech-Startup OroraTech gab den Abschluss eines mehrjährigen Vertrags mit der Deutschen Raumfahrtagentur (DLR) bekannt. Ziel der Partnerschaft ist es, Wissenschaftler:innen, Forschungseinrichtungen und weiteren Behörden wichtige Wärmedaten bereitzustellen.
/artikel/ororatech-spacetech-mit-kaerntner-co-founder-kooperiert-mit-deutscher-raumfahrtagentur
Das OroraTech-Führungsteam mit dem Kärntner Co-Founder Thomas Grübler (3.v.l.) | (c) OroraTech
Das OroraTech-Führungsteam mit dem Kärntner Co-Founder Thomas Grübler (3.v.l.) | (c) OroraTech

Angesichts der Zunahme von Naturkatastrophen gewinnt die Entwicklung innovativer Technologien in diesem Bereich zunehmend an Bedeutung. Eine dieser Technologien ist die „satellitengestützte Thermalsensorik“ von OroraTech. Mithilfe ihrer Nanosatelliten-Technologie kann das Startup Temperaturen auf der Erdoberfläche direkt aus dem Weltall messen und analysieren.

OroraTech wurde 2018 in München von dem österreichischen Co-Founder Thomas Grübler gegründet. Nach mehreren Finanzierungsrunden in Millionenhöhe gab Grübler im Oktober 2023 seinen Posten als CEO ab und übernahm die Rolle des Chief Strategy Officer (CSO). Nun verkündet OroraTech seine Zusammenarbeit mit der Deutschen Raumfahrtagentur (DLR).

OroraTech stellt “hochwertige Wärmedaten” für die Forschung zur Verfügung

Die Zusammenarbeit zielt darauf ab, einem breiten Netzwerk aus Forscher:innen und Wissenschaftler:innen entscheidende Daten zur Landoberflächentemperatur bereitzustellen. Grundlage dafür sind Informationen, die von OroraTechs Satelliten Forest-2 sowie dem bald startenden Otc-P1 im Orbit gesammelt werden.

„Durch die Partnerschaft mit OroraTech können wir deutschen Wissenschaftlern und Anwendungsentwicklern die hochwertigen Wärmedaten zur Verfügung stellen, die sie benötigen, um wirkungsvolle Forschung voranzutreiben und ihren innovativen Wert zu erkunden, während wir eine nachhaltigere Zukunft für alle Bürger aufbauen”, erklärt Godela Roßner, Leiterin der Erdbeobachtung bei der DLR.

Landoberflächentemperatur als wichtiges Instrument

OroraTech will mit seinen Echtzeitdaten Forscher:innen dabei unterstützen, „kritische Umweltprobleme besser zu verstehen und anzugehen“, erklärt das Startup.

„Daten zur Landoberflächentemperatur sind ein wichtiges Instrument, um zu verstehen, wie sich Umweltveränderungen auf Ökosysteme und städtische Gebiete auswirken. Wir sind stolz darauf, dass unsere Daten Wissenschaftlern in ganz Deutschland ermöglichen, innovative Lösungen für die Herausforderungen des Klimawandels zu entwickeln“, sagt Lisa-Katharina Habich, Leiterin der Geschäftsentwicklung bei OroraTech.

Zusammenarbeit zwischen öffentlichem und privatem Sektor

Diese Daten leisten einen wertvollen Beitrag für Forschung und Wissenschaft. Sie eröffnen vielfältige Anwendungsmöglichkeiten: von der Überwachung städtischer Wärmemuster zur Förderung einer nachhaltigen Stadtplanung, über Waldbrandprävention bis hin zur Beobachtung der Bewässerung von Nutzpflanzen zur Steigerung der landwirtschaftlichen Produktivität.

Mit der „Integration der fortschrittlichen Wärmedaten von OroraTech in ihr Ökosystem“ will die DLR die zentrale Bedeutung der Zusammenarbeit zwischen öffentlichem und privatem Sektor betonen. Diese Partnerschaft sei ein entscheidender Schritt für die erfolgreiche Umsetzung umfassender nationaler Klimainitiativen, heißt es in der Aussendung.

Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag

AI Summaries

Predicting Health: Grazer HealthTech erkennt vermeidbare Komplikationen im Krankenhaus

AI Kontextualisierung

Welche gesellschaftspolitischen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Predicting Health: Grazer HealthTech erkennt vermeidbare Komplikationen im Krankenhaus

AI Kontextualisierung

Welche wirtschaftlichen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Predicting Health: Grazer HealthTech erkennt vermeidbare Komplikationen im Krankenhaus

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Innovationsmanager:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Predicting Health: Grazer HealthTech erkennt vermeidbare Komplikationen im Krankenhaus

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Investor:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Predicting Health: Grazer HealthTech erkennt vermeidbare Komplikationen im Krankenhaus

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Politiker:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Predicting Health: Grazer HealthTech erkennt vermeidbare Komplikationen im Krankenhaus

AI Kontextualisierung

Was könnte das Bigger Picture von den Inhalten dieses Artikels sein?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Predicting Health: Grazer HealthTech erkennt vermeidbare Komplikationen im Krankenhaus

AI Kontextualisierung

Wer sind die relevantesten Personen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Predicting Health: Grazer HealthTech erkennt vermeidbare Komplikationen im Krankenhaus

AI Kontextualisierung

Wer sind die relevantesten Organisationen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Predicting Health: Grazer HealthTech erkennt vermeidbare Komplikationen im Krankenhaus