27.03.2024
EU-REGULIERUNG

MiCA und Krypto-Anlageberatung: Was für Kund:innen sichergestellt werden muss

Gastbeitrag. Zahlreiche Dienstleistungen in Bezug auf Kryptowerte werden ab dem 30. Dezember 2024 durch MiCA einer Zulassungspflicht unterliegen. Was dabei zu beachten ist, erläutert Rechtsanwalt Philipp Ley in einer zweiteiligen Serie.
/artikel/mica-und-krypto-anlageberatung-teil1
Philipp Ley ist Rechtsanwalt bei Stadler Völkel Rechtsanwälte und schreibt hier über MiCA
Philipp Ley ist Rechtsanwalt bei Stadler Völkel Rechtsanwälte | Foto: Stadler Völkel Rechtsanwälte, Hintergrund: Adobe Stock

Dieser Beitrag ist der erste einer zweiteiligen Serie zu MiCA und Anlageberatung. Teil 2 erscheint am Freitag und behandelt unter anderem die Anforderungen an Krypto-Anlageberater:innen.


Zahlreiche Dienstleistungen in Bezug auf Kryptowerte werden ab dem 30. Dezember 2024 durch die EU-Regulierung MiCA (Markets in Crypto Assets) einer Zulassungspflicht unterliegen. Beratung zu Kryptowerten darf ab diesem Zeitpunkt nur mehr dann erbracht werden, wenn eine entsprechende Zulassung vorab erworben wurde. 

Die klassische Vermögensberatung hingegen unterliegt in Österreich seither der Gewerbeordnung. Wer zu Finanzierungen, Krediten oder Veranlagungen berät, hat einen Befähigungsnachweis für dieses Gewerbe zu erbringen.

In Zukunft werden Vermögensberater auch die Möglichkeit haben, Kryptowerte in ihr Beratungs-Portfolio aufzunehmen. Dies ist allerdings nur dann zulässig, wenn die Regelungen der MiCA eingehalten werden. Die Erlangung einer Gewerbeberechtigung ist für die Beratung zu Kryptowerten nicht vorgesehen. Stattdessen gelten ähnliche Zulassungsanforderungen an Berater zu Kryptowerten wie im Bereich der Anlageberatung zu Finanzinstrumenten.

Wann liegt eine Beratung zu Kryptowerten vor?

Beratung ist jede Abgabe personalisierter Empfehlungen an Kunden in Bezug auf Kryptowerte oder die Nutzung von diesbezüglichen Dienstleistungen. Irrelevant ist, ob die Initiative für die Abgabe einer solchen Empfehlung vom Kunden selbst oder vom Berater ausgeht.

Dieses Konzept ist im Wesentlichen bereits bekannt: Auch Anlageberatung zu Finanzinstrumenten liegt bereits dann vor, wenn die Aufforderung für die Abgabe einer Empfehlung vom Kunden ausgeht. Zunächst könnte man meinen, es werde in dieser Hinsicht alles beim Alten bleiben, schließlich dienten die Regelungen der MiFID II als Vorbild.

Die Regelung der MiCA geht allerdings weiter und bezieht sich nicht nur auf Kryptowerte, sondern ausdrücklich auch auf Dienstleistungen in Bezug auf Kryptowerte. Suchen Kunden etwa Auskunft zum Erwerb bestimmter Kryptowerte, liegt jedenfalls eine Beratungstätigkeit vor.

Die Tragweite dieser Bestimmung ist aber noch nicht abschließend geklärt. Denn dasselbe soll auch bei der Abgabe von Empfehlungen hinsichtlich der in der MiCA geregelten Dienstleistungen gelten. Dies erfasst wohl auch die Empfehlung bestimmter Dienstleister. Berater müssen sich daher im Klaren sein, dass auch die bloße Empfehlung bestimmter Dienstleister als Beratungstätigkeit erfasst sein kann.

Nunmehr ist daher zum Beispiel die Empfehlung eines Wallet-Anbieters genauso als Beratungsdienstleistung erfasst, wie die Empfehlung zum Kauf bestimmter Kryptowerte. Sucht etwa ein Kunde Auskunft, bei welchem der zahlreichen Anbieter er ein Konto erstellen soll, könnte dies bereits als Beratungstätigkeit von der MiCA erfasst sein.

Anders ausgedrückt: Vergleicht ein Kunde die verschiedenen Dienstleister auf dem Markt und sucht er konkret Rat, bei welchem er eine Wallet zur Verwaltung seiner Kryptowerte erstellen soll, stellt jede auf den Kunden zugeschnittene Empfehlung eine Beratungstätigkeit dar, die von den Regelungen der MiCA erfasst ist.

In diesem Zusammenhang wird der Berater zum Beispiel auch darüber aufzuklären haben, ob die angebotene Wallet die Verwaltung der privaten Schlüssel durch den Kunden selbst ermöglicht, oder ob diese vom Kunden selbst verwaltet werden (und was dies bedeutet). 

Den weitaus häufigsten Fall der Beratungstätigkeit wird aber weiterhin die Beratung von Privatkunden darstellen, die Auskunft zu Kryptowerten zur Vermögensanlage suchen. Überlegt ein Kunde, sein Portfolio zu erweitern und in verschiedene Tokenprojekte zu investieren, unterliegt der Berater bei der Abgabe einer Empfehlung an den Kunden dem Regime der MiCA.

Eine Empfehlung liegt immer dann vor, wenn sie 

  • sich auf den Kauf, Verkauf oder das Halten eines Kryptowerts bezieht oder 
  • auf den Abschluss oder Nichtabschluss einer Dienstleistung zu Kryptowerten gerichtet ist, also beispielsweise die Empfehlung an einen Kunden seine Kryptowerte auf der Wallet eines bestimmten Anbieters zu verwalten.

Werden nur allgemeine Informationen in Bezug auf Kryptowerte erteilt oder Informationen zu Kryptowerten veröffentlicht, liegt darin noch keine personalisierte Empfehlung.

Durchführung sogenannter Eignungstests

Die vom Berater abgegebene Empfehlung muss stets auf den Kunden zugeschnitten sein. Zu diesem Zweck muss sich der Berater ein klares Bild über die persönlichen Verhältnisse des Kunden verschaffen und prüfen, ob die angedachte Empfehlung für den Kunden geeignet ist (Eignungstest). Es sind die Kenntnisse und Erfahrungen des Kunden mit Kryptowerten, die Anlageziele und die persönlichen finanziellen Verhältnisse zu erfragen.

Der Berater muss insbesondere über die Verlusttoleranz seiner Kunden Bescheid wissen, also wie viel Vermögen für die Investition in Kryptowerte vorhanden ist. Die Abgabe von Empfehlungen, die über die finanziellen Verhältnisse des Kunden hinausgehen, ist daher unzulässig. So sollte ein Berater einem Kunden nicht nahelegen, in bestimmte Kryptowerte zu investieren, wenn diese Investition zu einem Verlust des Großteils seines Vermögens führen könnte. 

Der Berater muss daher folgende Schritte vornehmen:

  1. Informationen über die persönlichen Verhältnisse des Kunden einholen;
  2. prüfen, welche Kryptowerte oder Dienstleistungen für den Kunden geeignet sind;
  3. eine persönliche Empfehlung an den Kunden abgeben.

Die Beratung wird regelmäßig in Form persönlicher Gespräche mit Kunden erfolgen. Ziel solcher Beratungsgespräche ist auch, dass der Kunde über die Funktion und Risiken der Blockchain und von Kryptowerten im Allgemeinen ausreichend informiert wird, der Kunde nur in jene Kryptowerte investiert, die im Einklang mit seinen Anlagezielen stehen und dass auf die persönlichen und finanziellen Verhältnisse Rücksicht genommen wird.

Wie können Berater die erforderlichen Informationen von Kunden einholen?

Die Einholung von Informationen vom Kunden ist der Abgabe einer Empfehlung vorgelagert. In welcher Form die Informationen von Kunden eingeholt werden, schreibt MiCA nicht vor. Zur Nachweisbarkeit der ordnungsgemäßen Beratungstätigkeit empfiehlt sich, die Informationen in Form von Fragebögen einzuholen. Dabei ist darauf zu achten, dass die Fragen an den Kunden nicht zu allgemein erfolgen und es gestatten, eine Beurteilung des Kunden vorzunehmen.

Anstatt etwa den Kunden zu fragen, wie viel Erfahrung er bereits mit Kryptowerten hat, könnte der Berater erfragen, mit welchen Kryptowerten und Dienstleistungen in Bezug auf Kryptowerte der Kunde vertraut ist. Einzelheiten dazu hat die Europäische Wertpapier- und Marktaufsichtsbehörde (ESMA) in ihrem dritten Konsultationspapier (Consultation Package 3) vom 25. März 2024 veröffentlicht.

Erhält ein Berater nicht die erforderlichen Informationen, darf er dem Kunden keine Kryptowerte empfehlen. Weigert sich ein Kunde daher, bestimmte Auskünfte zu erteilen, so muss der Berater ihn darauf hinweisen, dass er nicht tätig werden darf.

Im Zuge dieser Informationseinholung ist auch die Risikobereitschaft des Kunden zu erfragen. Zur Vereinfachung können die Berater ihre Kunden in Gruppen einteilen, etwa jene mit geringer, mittlere und hoher (spekulativer) Risikobereitschaft.

Relevant bleiben aber stets die mit dem konkreten Geschäft verbundenen Ziele des Kunden. So könnte ein risikobereiter Kunde auch zum Abschluss eines risikoarmen Geschäfts um Auskunft ersuchen. Neben der allgemeinen Risikobereitschaft des Kunden muss daher sichergestellt sein, dass der Berater in Kenntnis der jeweiligen Ziele des Kunden ist.

Erst in einem zweiten Schritt nimmt der Berater die Beurteilung der Eignung anhand der Angaben des Kunden vor (Eignungstest). Kommt ein Berater beispielsweise nach Klärung der persönlichen Verhältnisse zu dem Schluss, dass das konkret vom Kunden angedachte Geschäft zu risikoreich ist, empfiehlt er die Investition in andere Kryptowerte. 

Dem Kunden ist ein Bericht über die Eignung zu übermitteln, in dem die erteilte Beratung festgehalten ist und dargelegt wird, wie diese Beratung den Präferenzen, Zielen und anderen Merkmalen der Kunden entspricht. Dieser Bericht wird in elektronischem Format erstellt und muss zumindest enthalten:

  1. (allenfalls aktualisierte) Informationen über die Beurteilung der Eignung und 
  2. einen Überblick über die geleistete Beratung.

Philipp Ley ist Rechtsanwalt bei Stadler Völkel Rechtsanwälte. Zu seinen fachlichen Spezialisierungen zählen das Banken- und Kapitalmarktrecht, Finanzierungen sowie die rechtliche Beratung in sämtlichen Anwendungsbereichen der Blockchain-Technologie.

Deine ungelesenen Artikel:
27.01.2025

Open Source und KI: „Es geht nicht darum, zu den Guten zu gehören“

Nachlese. Die Nutzung von Open-Source-Modellen eröffnet Unternehmen auch im KI-Bereich weitreichende Möglichkeiten. Es gibt dabei aber auch einiges zu bedenken. Darüber und mehr diskutierten in Folge 5 von "No Hype KI" Stephan Kraft von Red Hat, Florian Böttcher von CANCOM Austria, Natalie Ségur-Cabanac von Women in AI und Patrick Ratheiser von Leftshift.One.
/artikel/no-hype-ki-folge-5
27.01.2025

Open Source und KI: „Es geht nicht darum, zu den Guten zu gehören“

Nachlese. Die Nutzung von Open-Source-Modellen eröffnet Unternehmen auch im KI-Bereich weitreichende Möglichkeiten. Es gibt dabei aber auch einiges zu bedenken. Darüber und mehr diskutierten in Folge 5 von "No Hype KI" Stephan Kraft von Red Hat, Florian Böttcher von CANCOM Austria, Natalie Ségur-Cabanac von Women in AI und Patrick Ratheiser von Leftshift.One.
/artikel/no-hype-ki-folge-5

„No Hype KI“ wird unterstützt von CANCOM AustriaIBMITSVMicrosoftNagarroRed Hat und Universität Graz.

Kollaborativ, transparent, frei zugänglich und nicht profit-orientiert – mit Open-Source-Software wird eine Reihe von Eigenschaften assoziiert. Und oftmals stehen bei der Nutzung ethische Überlegungen im Zentrum. Dabei gibt es auch ganz praktische Gründe, die für eine Verwendung durch Unternehmen sprechen – auch bei der Implementierung von KI-Anwendungen, ist Stephan Kraft, Community Advocate & Business Development OpenShift & Application Services bei Red Hat, überzeugt. In Folge fünf der Serie „No Hype KI“ diskutierte er dieses und weitere Themen mit Florian Böttcher, Solution Architect bei CANCOM Austria, Natalie Ségur-Cabanac, Policy Lead bei Women in AI und Patrick Ratheiser, Gründer & CEO von Leftshift.One.

„Thema ein Stück weit aus dieser emotionalen, moralisierenden Ecke herausholen“

„Ich will das Thema ein Stück weit aus dieser emotionalen, moralisierenden Ecke herausholen“, sagt Stephan Kraft. Für Red Hat als weltweit führenden Anbieter für Open-Source-Lösungen für Unternehmen gehen die Argumente für eine Nutzung nämlich weit darüber hinaus. „Es geht nicht darum, Open Source als Selbstzweck zu sehen, um zu den Guten zu gehören“, so der Experte. Tatsächlich sei die Verwendung von Open Source gerade bei der Etablierung von KI im Unternehmen für Startups und KMU eine wichtige Weichenstellung.

Offenheit, um Diskriminierung entgegenzuwirken

Auch Natalie Ségur-Cabanac sieht Open Source als „Key Technology“ im KI-Bereich. Für „Women in AI“ spiele die Offenheit eine zentrale Rolle: „Diese Offenheit braucht es, um Diskriminierung entgegenzuwirken.“ Open Source verbessere den Zugang für Frauen zur Technologie, die Abbildung von Frauen in den Daten und es vergrößere die Möglichkeiten in der Forschung. Man müsse aber auch aufpassen, ob Software wirklich so offen sei, wie behauptet, sagt sie bezogen auf die aktuellen Diskussionen rund um OpenAI, das sich – ursprünglich als offenes Projekt gestartet – zum profitorientierten Unternehmen entwickelte. Es brauche auch eine klare Definition, was „open“ sei.

Masse an Möglichkeiten

Leftshift.One-Gründer Patrick Ratheiser betont auch die schiere Masse an Möglichkeiten, die Open Source bietet. „2021 hatten wir weltweit Zugriff auf circa 5.000 Open-Source-Modelle. Jetzt sind es bereits mehr als eine Million.“ Die Nutzbarkeit sei also klar gegeben, zudem biete die Technologie eine gewisse Unabhängigkeit und werde über ihre Vielfalt zum Innovationstreiber.

Ist Open Source immer die beste Lösung?

Doch bedeutet das, dass Open Source immer die optimale Lösung ist? Ratheiser sieht das differenziert: „Es ist ganz wichtig zu erkennen, was der Kunde braucht und was in dem Fall gerade notwendig ist. Egal, ob es nun On-Premise, in der Cloud, Open Source oder Closed Source ist.“ Florian Böttcher von CANCOM Austria pflichtet hier bei: „Wir setzen genau so auf hybrid.“

Datenstruktur im Hintergrund ist entscheidend

Ein Thema, bei dem bei Open Source Vorsicht geboten ist, spricht Natalie Ségur-Cabanac an. Besonders wichtig sei es bei KI-Anwendungen, eine gute Datenstruktur im Hintergrund zu haben. „Die Verantwortung, dass ein Modell mit sauberen Daten trainiert worden ist, liegt bei den Anbietern. Bei Open Source verschwimmt das ein bisschen. Wer ist wofür zuständig? Das ist eine Herausforderung für die Compliance zu schauen, wo man selbst verantwortlich ist und wo man sich auf einen Anbieter verlassen kann.“

Compliance: Großes Thema – mehr Sichereheit mit professioneller Unterstützung

Stephan Kraft hakt hier ein. Genau aus solchen Gründen gebe es Unternehmen wie Red Hat, die mit ihrem Enterprise-Support für Open-Source-Lösungen die Qualitätssicherung auch im rechtlichen Bereich übernehmen. „Das ist ein ganz wichtiger Teil unseres Versprechens gegenüber Kunden“, so Kraft. Unbedacht im Unternehmen mit Open Source zu arbeiten, könne dagegen in „Compliance-Fallen“ führen, pflichtet er Ségur-Cabanac bei.

Das sieht auch Patrick Ratheiser als Thema bei Leftshift.One: „Unsere Lösung ist Closed Source, wir setzen aber im Hintergrund Open Source ein. Wichtig ist, dass wir dem Kunden Compliance garantieren können.“ Stephan Kraft empfiehlt Unternehmen bei der Open-Source-Nutzung: „Man kann nicht immer gleich die neueste ‚bleeding edge‘-Lösung nehmen sondern sollte etwas konservativer herangehen.“

Infrastruktur: Gut planen, was man wirklich braucht

Unabhängig davon, ob man nun Open Source oder Closed Source nutzt, braucht es für die Nutzung von KI die richtige Infrastruktur. „Es kommt natürlich auf den Use Case an, den ein Unternehmen umsetzen will. Da sind die Anforderungen an die Infrastruktur sehr unterschiedlich“, grenzt Florian Böttcher ein. CANCOM Austria unterstützt seine Kunden in genau der Frage. Anwendungen wie das Training von KI-Modellen würde aus gutem Grund kaum in Österreich umgesetzt. „KI ist sehr stromhungrig und entwickelt viel Hitze. Das ist schwierig für ein eigenes Data-Center im Unternehmen, gerade wenn man die Strompreise in Österreich ansieht“, so Böttcher.

„Rechenleistungs-Hunger“ von KI könnte sich in Zukunft verringern

Wichtig sei es letztlich, sich als Unternehmen sehr klar darüber zu sein, was man umsetzen wolle. „Danach, welche Software-Lösung man für seinen Use Case einsetzen muss, richtet sich auch die Infrastruktur“, so Böttcher. Er erwarte aber auch, dass die KI-Modelle im nächsten Entwicklungsschritt effizienter werden und der „Rechenleistungs-Hunger“ sich verringere.

Patrick Ratheiser ergänzt: „Es ist grundsätzlich eine Kostenfrage.“ Unternehmen müssten sich sehr gut überlegen, ob sie ein eigenes LLM (Large Language Model) betreiben und dieses sogar selbst trainieren wollen, oder lieber doch eine Usage-basierte Lösung wählen. Er sehe bei österreichischen Unternehmen – auch bei größeren – eine klare Tendenz zur zweiten Variante. „Es lässt sich deutlich schneller einrichten, ist kalkulierbarer und auch viel schneller skalierbar“, erklärt Ratheiser.

Etwa im Forschungsbereich sei es jedoch wichtig und notwendig, auch eigene LLMs und die damit verbundene Infrastruktur zu betreiben. Doch auch die Möglichkeit von hybriden Lösungen biete sich an. „Man kann mittlerweile auch Teile in der Cloud lassen und Teile On-Premise. Man kann etwa nur ein datenschutzsicheres LLM selbst betreiben“, erklärt der Experte, der auch bei der Wahl der genutzten Modelle einen hybriden Ansatz empfiehlt: „Man braucht nicht für alle Use Cases das neueste Modell. Manchmal braucht man überhaupt kein LLM.“

Datenschutz: Einige Herausforderungen bei LLMs

Stichwort: Datenschutz. Hier schafft die europäische Datenschutzgrundverordnung (DSGVO) im KI-Bereich besondere Herausforderungen, weiß Natalie Ségur-Cabanac, die vorab betont: „Ich persönlich halte die DSGVO für ein gutes Regulierungswerk, weil sie sehr viel Spielraum gibt. Ich sage immer: Datenschutz ist sehr komplex, aber nicht kompliziert.“ Konkret seien etwa der Grundsatz der Zweckbezogenheit, also dass man Daten nur für konkrete Zwecke einsetzen darf, und dass man sie minimierend einsetzen muss, relevant für den KI-Bereich. „Da haben wir schon einen Konflikt, weil man ja [bei LLMs] erst einmal schaut, was man aus möglichst vielen Daten machen kann“, so die Expertin.

Ist KI rechtlich innerhalb der EU sogar per se in einem Graubereich?

Auch Transparenzbestimmungen – sowohl in der DSGVO als auch im AI-Act der EU – seien zu beachten. „Wenn ich KI verwende, muss ich auch wissen, was drinnen ist“, fasst Ségur-Cabanac zusammen. Ist KI also rechtlich innerhalb der EU sogar per se in einem Graubereich? „Nein, das glaube ich nicht. Aber man muss seine Hausaufgaben schon gut machen“, sagt die Expertin. Wichtig sei daher auch die im Rahmen des EU-AI-Acts eingeforderte KI-Kompetenz in Unternehmen – im technischen und rechtlichen Bereich.

KI-Kompetenz als zentrales Thema

Patrick Ratheiser stimmt zu: „Neben der Technologie selber sind bei unseren Kunden die Mitarbeiter ein Riesen-Thema. Man muss sie nicht nur wegen dem AI-Act fit bekommen, sondern es geht darum, sie wirklich auf die Anwendungen einzuschulen.“ Wichtig seien dabei auch die Kolleg:innen, die sich bereits mit dem Thema auskennen – die „Pioniere“ im Unternehmen. „AI Literacy ist sicherlich das Thema 2025 und in nächster Zeit. So, wie wir gelernt haben, mit dem Smartphone umzugehen, werden wir es auch mit generativer KI lernen“, so Ratheiser.

„Einfach einmal ausprobieren“

Stephan Kraft ergänzt: Neben einer soliden Datenbasis und der notwendigen Kompetenz brauche es bei KI – gerade auch im Bereich Open Source – noch etwas: „Einfach einmal ausprobieren. Es braucht auch Trial and Error. Das ist vielleicht oft das Schwierigste für CFOs und Geschäftsführer.“ Dieses Ausprobieren sollte aber innerhalb eines festgelegten Rahmens passieren, damit die KI-Implementierung gelingt, meint Natalie Ségur-Cabanac: „Unternehmen brauchen eine KI-Strategie und müssen wissen, was sie mit der Technologie erreichen wollen.“ Auch sich mit den zuvor angesprochenen rechtlichen Anforderungen – Stichwort Compliance – zu beschäftigen, komme zeitlich erst nach der Festlegung der Strategie.


Die gesamte Folge ansehen:

Die Nachlesen der bisherigen Folgen:

Folge 1: “No Hype KI – wo stehen wir nach zwei Jahren ChatGPT?

Folge 2: “Was kann KI in Gesundheit, Bildung und im öffentlichen Sektor leisten?

Folge 3: “Der größte Feind ist Zettel und Bleistift”: Erfolgsfaktoren und Herausforderungen in der KI-Praxis”

Folge 4: KI-Geschäftsmodelle: “Wir nutzen nur einen Bruchteil dessen, was möglich ist”


Die Serie wird von brutkasten in redaktioneller Unabhängigkeit mit finanzieller Unterstützung unserer Partner:innen produziert.

No Hype KI
27.01.2025

Open Source und KI: „Es geht nicht darum, zu den Guten zu gehören“

Nachlese. Die Nutzung von Open-Source-Modellen eröffnet Unternehmen auch im KI-Bereich weitreichende Möglichkeiten. Es gibt dabei aber auch einiges zu bedenken. Darüber und mehr diskutierten in Folge 5 von "No Hype KI" Stephan Kraft von Red Hat, Florian Böttcher von CANCOM Austria, Natalie Ségur-Cabanac von Women in AI und Patrick Ratheiser von Leftshift.One.
27.01.2025

Open Source und KI: „Es geht nicht darum, zu den Guten zu gehören“

Nachlese. Die Nutzung von Open-Source-Modellen eröffnet Unternehmen auch im KI-Bereich weitreichende Möglichkeiten. Es gibt dabei aber auch einiges zu bedenken. Darüber und mehr diskutierten in Folge 5 von "No Hype KI" Stephan Kraft von Red Hat, Florian Böttcher von CANCOM Austria, Natalie Ségur-Cabanac von Women in AI und Patrick Ratheiser von Leftshift.One.

„No Hype KI“ wird unterstützt von CANCOM AustriaIBMITSVMicrosoftNagarroRed Hat und Universität Graz.

Kollaborativ, transparent, frei zugänglich und nicht profit-orientiert – mit Open-Source-Software wird eine Reihe von Eigenschaften assoziiert. Und oftmals stehen bei der Nutzung ethische Überlegungen im Zentrum. Dabei gibt es auch ganz praktische Gründe, die für eine Verwendung durch Unternehmen sprechen – auch bei der Implementierung von KI-Anwendungen, ist Stephan Kraft, Community Advocate & Business Development OpenShift & Application Services bei Red Hat, überzeugt. In Folge fünf der Serie „No Hype KI“ diskutierte er dieses und weitere Themen mit Florian Böttcher, Solution Architect bei CANCOM Austria, Natalie Ségur-Cabanac, Policy Lead bei Women in AI und Patrick Ratheiser, Gründer & CEO von Leftshift.One.

„Thema ein Stück weit aus dieser emotionalen, moralisierenden Ecke herausholen“

„Ich will das Thema ein Stück weit aus dieser emotionalen, moralisierenden Ecke herausholen“, sagt Stephan Kraft. Für Red Hat als weltweit führenden Anbieter für Open-Source-Lösungen für Unternehmen gehen die Argumente für eine Nutzung nämlich weit darüber hinaus. „Es geht nicht darum, Open Source als Selbstzweck zu sehen, um zu den Guten zu gehören“, so der Experte. Tatsächlich sei die Verwendung von Open Source gerade bei der Etablierung von KI im Unternehmen für Startups und KMU eine wichtige Weichenstellung.

Offenheit, um Diskriminierung entgegenzuwirken

Auch Natalie Ségur-Cabanac sieht Open Source als „Key Technology“ im KI-Bereich. Für „Women in AI“ spiele die Offenheit eine zentrale Rolle: „Diese Offenheit braucht es, um Diskriminierung entgegenzuwirken.“ Open Source verbessere den Zugang für Frauen zur Technologie, die Abbildung von Frauen in den Daten und es vergrößere die Möglichkeiten in der Forschung. Man müsse aber auch aufpassen, ob Software wirklich so offen sei, wie behauptet, sagt sie bezogen auf die aktuellen Diskussionen rund um OpenAI, das sich – ursprünglich als offenes Projekt gestartet – zum profitorientierten Unternehmen entwickelte. Es brauche auch eine klare Definition, was „open“ sei.

Masse an Möglichkeiten

Leftshift.One-Gründer Patrick Ratheiser betont auch die schiere Masse an Möglichkeiten, die Open Source bietet. „2021 hatten wir weltweit Zugriff auf circa 5.000 Open-Source-Modelle. Jetzt sind es bereits mehr als eine Million.“ Die Nutzbarkeit sei also klar gegeben, zudem biete die Technologie eine gewisse Unabhängigkeit und werde über ihre Vielfalt zum Innovationstreiber.

Ist Open Source immer die beste Lösung?

Doch bedeutet das, dass Open Source immer die optimale Lösung ist? Ratheiser sieht das differenziert: „Es ist ganz wichtig zu erkennen, was der Kunde braucht und was in dem Fall gerade notwendig ist. Egal, ob es nun On-Premise, in der Cloud, Open Source oder Closed Source ist.“ Florian Böttcher von CANCOM Austria pflichtet hier bei: „Wir setzen genau so auf hybrid.“

Datenstruktur im Hintergrund ist entscheidend

Ein Thema, bei dem bei Open Source Vorsicht geboten ist, spricht Natalie Ségur-Cabanac an. Besonders wichtig sei es bei KI-Anwendungen, eine gute Datenstruktur im Hintergrund zu haben. „Die Verantwortung, dass ein Modell mit sauberen Daten trainiert worden ist, liegt bei den Anbietern. Bei Open Source verschwimmt das ein bisschen. Wer ist wofür zuständig? Das ist eine Herausforderung für die Compliance zu schauen, wo man selbst verantwortlich ist und wo man sich auf einen Anbieter verlassen kann.“

Compliance: Großes Thema – mehr Sichereheit mit professioneller Unterstützung

Stephan Kraft hakt hier ein. Genau aus solchen Gründen gebe es Unternehmen wie Red Hat, die mit ihrem Enterprise-Support für Open-Source-Lösungen die Qualitätssicherung auch im rechtlichen Bereich übernehmen. „Das ist ein ganz wichtiger Teil unseres Versprechens gegenüber Kunden“, so Kraft. Unbedacht im Unternehmen mit Open Source zu arbeiten, könne dagegen in „Compliance-Fallen“ führen, pflichtet er Ségur-Cabanac bei.

Das sieht auch Patrick Ratheiser als Thema bei Leftshift.One: „Unsere Lösung ist Closed Source, wir setzen aber im Hintergrund Open Source ein. Wichtig ist, dass wir dem Kunden Compliance garantieren können.“ Stephan Kraft empfiehlt Unternehmen bei der Open-Source-Nutzung: „Man kann nicht immer gleich die neueste ‚bleeding edge‘-Lösung nehmen sondern sollte etwas konservativer herangehen.“

Infrastruktur: Gut planen, was man wirklich braucht

Unabhängig davon, ob man nun Open Source oder Closed Source nutzt, braucht es für die Nutzung von KI die richtige Infrastruktur. „Es kommt natürlich auf den Use Case an, den ein Unternehmen umsetzen will. Da sind die Anforderungen an die Infrastruktur sehr unterschiedlich“, grenzt Florian Böttcher ein. CANCOM Austria unterstützt seine Kunden in genau der Frage. Anwendungen wie das Training von KI-Modellen würde aus gutem Grund kaum in Österreich umgesetzt. „KI ist sehr stromhungrig und entwickelt viel Hitze. Das ist schwierig für ein eigenes Data-Center im Unternehmen, gerade wenn man die Strompreise in Österreich ansieht“, so Böttcher.

„Rechenleistungs-Hunger“ von KI könnte sich in Zukunft verringern

Wichtig sei es letztlich, sich als Unternehmen sehr klar darüber zu sein, was man umsetzen wolle. „Danach, welche Software-Lösung man für seinen Use Case einsetzen muss, richtet sich auch die Infrastruktur“, so Böttcher. Er erwarte aber auch, dass die KI-Modelle im nächsten Entwicklungsschritt effizienter werden und der „Rechenleistungs-Hunger“ sich verringere.

Patrick Ratheiser ergänzt: „Es ist grundsätzlich eine Kostenfrage.“ Unternehmen müssten sich sehr gut überlegen, ob sie ein eigenes LLM (Large Language Model) betreiben und dieses sogar selbst trainieren wollen, oder lieber doch eine Usage-basierte Lösung wählen. Er sehe bei österreichischen Unternehmen – auch bei größeren – eine klare Tendenz zur zweiten Variante. „Es lässt sich deutlich schneller einrichten, ist kalkulierbarer und auch viel schneller skalierbar“, erklärt Ratheiser.

Etwa im Forschungsbereich sei es jedoch wichtig und notwendig, auch eigene LLMs und die damit verbundene Infrastruktur zu betreiben. Doch auch die Möglichkeit von hybriden Lösungen biete sich an. „Man kann mittlerweile auch Teile in der Cloud lassen und Teile On-Premise. Man kann etwa nur ein datenschutzsicheres LLM selbst betreiben“, erklärt der Experte, der auch bei der Wahl der genutzten Modelle einen hybriden Ansatz empfiehlt: „Man braucht nicht für alle Use Cases das neueste Modell. Manchmal braucht man überhaupt kein LLM.“

Datenschutz: Einige Herausforderungen bei LLMs

Stichwort: Datenschutz. Hier schafft die europäische Datenschutzgrundverordnung (DSGVO) im KI-Bereich besondere Herausforderungen, weiß Natalie Ségur-Cabanac, die vorab betont: „Ich persönlich halte die DSGVO für ein gutes Regulierungswerk, weil sie sehr viel Spielraum gibt. Ich sage immer: Datenschutz ist sehr komplex, aber nicht kompliziert.“ Konkret seien etwa der Grundsatz der Zweckbezogenheit, also dass man Daten nur für konkrete Zwecke einsetzen darf, und dass man sie minimierend einsetzen muss, relevant für den KI-Bereich. „Da haben wir schon einen Konflikt, weil man ja [bei LLMs] erst einmal schaut, was man aus möglichst vielen Daten machen kann“, so die Expertin.

Ist KI rechtlich innerhalb der EU sogar per se in einem Graubereich?

Auch Transparenzbestimmungen – sowohl in der DSGVO als auch im AI-Act der EU – seien zu beachten. „Wenn ich KI verwende, muss ich auch wissen, was drinnen ist“, fasst Ségur-Cabanac zusammen. Ist KI also rechtlich innerhalb der EU sogar per se in einem Graubereich? „Nein, das glaube ich nicht. Aber man muss seine Hausaufgaben schon gut machen“, sagt die Expertin. Wichtig sei daher auch die im Rahmen des EU-AI-Acts eingeforderte KI-Kompetenz in Unternehmen – im technischen und rechtlichen Bereich.

KI-Kompetenz als zentrales Thema

Patrick Ratheiser stimmt zu: „Neben der Technologie selber sind bei unseren Kunden die Mitarbeiter ein Riesen-Thema. Man muss sie nicht nur wegen dem AI-Act fit bekommen, sondern es geht darum, sie wirklich auf die Anwendungen einzuschulen.“ Wichtig seien dabei auch die Kolleg:innen, die sich bereits mit dem Thema auskennen – die „Pioniere“ im Unternehmen. „AI Literacy ist sicherlich das Thema 2025 und in nächster Zeit. So, wie wir gelernt haben, mit dem Smartphone umzugehen, werden wir es auch mit generativer KI lernen“, so Ratheiser.

„Einfach einmal ausprobieren“

Stephan Kraft ergänzt: Neben einer soliden Datenbasis und der notwendigen Kompetenz brauche es bei KI – gerade auch im Bereich Open Source – noch etwas: „Einfach einmal ausprobieren. Es braucht auch Trial and Error. Das ist vielleicht oft das Schwierigste für CFOs und Geschäftsführer.“ Dieses Ausprobieren sollte aber innerhalb eines festgelegten Rahmens passieren, damit die KI-Implementierung gelingt, meint Natalie Ségur-Cabanac: „Unternehmen brauchen eine KI-Strategie und müssen wissen, was sie mit der Technologie erreichen wollen.“ Auch sich mit den zuvor angesprochenen rechtlichen Anforderungen – Stichwort Compliance – zu beschäftigen, komme zeitlich erst nach der Festlegung der Strategie.


Die gesamte Folge ansehen:

Die Nachlesen der bisherigen Folgen:

Folge 1: “No Hype KI – wo stehen wir nach zwei Jahren ChatGPT?

Folge 2: “Was kann KI in Gesundheit, Bildung und im öffentlichen Sektor leisten?

Folge 3: “Der größte Feind ist Zettel und Bleistift”: Erfolgsfaktoren und Herausforderungen in der KI-Praxis”

Folge 4: KI-Geschäftsmodelle: “Wir nutzen nur einen Bruchteil dessen, was möglich ist”


Die Serie wird von brutkasten in redaktioneller Unabhängigkeit mit finanzieller Unterstützung unserer Partner:innen produziert.

No Hype KI
Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag