19.06.2024
KÜNSTLICHE INTELLIGENZ

Lösung gegen KI-Halluzinationen? So funktioniert Sepp Hochreiters SDLG-Methode

Halluzinationen sind ein großes Problem der KI-Szene. Und das weltweit. Während Google und Microsoft sich bei einer Lösung schwertun, kommt aus Österreich ein Modell, dass solche "KI-Unsicherheiten" besser erkennen soll. Es heißt: SDLG. Wie genau, erklärt KI-Experte Sepp Hochreiter in einem Gespräch mit uns.
/artikel/loesung-gegen-ki-halluzinationen-so-funktioniert-sepp-hochreiters-sdlg-methode
SDLG, KI, Hochreiter, Halluzination
(c) brutkasten - Sepp Hochreiter zu SDLG.

“Großartige Arbeit meines Teams: Erkennen, ob LLMs (Anm.: Large Language Models) halluzinieren. Sie halluzinieren, wenn sie unsicher sind. Wir erkennen diese Unsicherheit und markieren Halluzinationen” – so beschreibt KI-Koryphäe Sepp Hocheiter auf LinkedIn die Errungenschaft, die er uns seine Forscher:innen am Institut für Machine Learning der Johannes Kepler Universität Linz vollbracht haben. Dabei spricht er von dem SDLG-Modell. Der Begriff steht für “Semantically Diverse Language Generation”.

Denn es ist ein großes Thema, das die KI-Community beherrscht. Bei Nutzung von Künstlicher Intelligenz (KI) kann es passieren, dass man eine Frage stellt und falsche Antworten bekommt. Im Fachjargon sagt man dazu, die KI halluziniert.

SDLG verbessert Erkennung von Halluzinationen

Wie brutkasten berichtete, tun sich Giganten wie Google und Microsoft schwer, dieser Problematik habhaft zu werden. Eine neuer Lösungsansatz kam heuer vom Wiener Startup datAInsights, die statt impliziten explizite Fakten bzw. explizites Wissen verwenden, das dokumentiert ist. “Wir reichern bestehende Knowledge-Systeme mit Quellen an, sodass sie für unsere Architektur verarbeitet werden können”, erklärte datAInsights-Co-Founder René Heinzl im März 2023.

Nun kommt ein weiterer Lösungsansatz aus dem Umfeld von Sepp Hochreiter: SDLG. Diese neue Methode verbessert die Erkennung von Halluzinationen in LLMs (Large Language Modellen), indem es die Unsicherheitsabschätzung vorantreibt oder anders gesagt, aufzeigt, wenn ein Large Language Modell “unsicher” ist.

Man muss wissen, dass LLMs als Basis für Künstliche Intelligenz dienen und wie eine Zeichenkette aufgebaut sind. Hier wirken Wahrscheinlichkeiten, die das nächste Zeichen (konkret das nächste Wort oder um noch genauer zu sein, die nächsten Buchstaben) produzieren und Antworten auf Fragen liefern. Da kann es zu Fehlern oder falschen Informationen kommen.

Einstein oder Newton?

“Hochreiter präzisiert gegenüber brutkasten: “Halluzinationen können entstehen, wenn ein Trainingsdaten-Set fehlende oder zu wenige Daten zu einem Thema hat”, sagt er. “‘Albert Einstein hat die Relativitätstheorie entwickelt’ kann in verschiedenen Varianten (Anm.: Einstein hat die Relativitätstheorie erfunden, die Relativitätstheorie wurde von Einstein erfunden oder entwickelt, Der Vater der Relativitätstheorie ist Alber Einstein, etc.) im Trainingsdaten-Set als Information dienen. Gibt es diese nicht oder nur ungenügend, und die KI weiß, dass das Relativität etwas mit Physik zu tun hat, kann es sein, dass die Antwort plötzlich Newton ist.”

SDLG erkennt ob “LLMs halluzinieren”

Lukas Aichberger, “ELLIS PhD”-Student am Institut für Machine Learning der JKU beschreibt per LinkedIn-Post die SDLG-Methode – die er, Kajetan Schweighofer, Mykyta Ielanskyi und Sepp Hochreiter entwickelt haben – wie folgt: “Wir schaffen eine theoretische Grundlage für Unsicherheitsmaße in LLMs und führen theoretisch begründete ‘Estimatoren’ (Schätzer) für semantische Unsicherheit ein. Und stellen eine Methode zur Verfügung, um semantisch vielfältige und dennoch wahrscheinliche Ausgabesequenzen zu erzeugen, indem wir die Texterzeugung eines LLMs so steuern, dass wichtige Informationen für den semantischen Unsicherheitsschätzer erfasst werden.”

SDGL, KI, Halluzinationen, Hochreiter
(c) zVg – (v.l.) Sepp Hochreiter, Lukas Aichberger, Mykyta Ielanskyi und Kajetan Schweighofer.

In anderen Worten hebt die SDGL-Methode jene Aussagen hervor, wo sich die KI nicht sicher ist und markiert sie, damit man die durch “semantische Unsicherheit” (des Large Language Models) hervorgerufenen Halluzinationen erkennt, wie Hochreiter präzisiert.

Im 23-seitigen Paper, das die Forscher herausgebracht haben, heißt es konkret: “SDLG steuert das LLM, um semantisch unterschiedliche, aber wahrscheinliche Alternativen für einen ursprünglich generierten Text zu erzeugen. Dieser Ansatz liefert ein präzises Maß für die aleatorische (Anm.: vom Zufall abhängige) semantische Unsicherheit und erkennt, ob der ursprüngliche Text wahrscheinlich halluziniert ist. Experimente mit Aufgaben zur Beantwortung von Fragen zeigen, dass SDLG bestehende Methoden durchgängig übertrifft und dabei rechnerisch am effizientesten ist, wodurch ein neuer Standard für die Unsicherheitsabschätzung in LLMs gesetzt wird.”

Deine ungelesenen Artikel:
04.11.2024

Carbon Cleanup: Wie ein Linzer Startup die Kohlefaserindustrie revolutionieren möchte

Das Linzer Startup Carbon Cleanup hat sich auf das Recycling von Kohlenstofffasern aus Industrieabfällen spezialisiert. Wir haben mit Gründer und CEO Jörg Radanitsch über die weiteren Wachstumsschritte und eine neue Kooperation mit KTM Technologies gesprochen. 
/artikel/carbon-cleanup-portraet
04.11.2024

Carbon Cleanup: Wie ein Linzer Startup die Kohlefaserindustrie revolutionieren möchte

Das Linzer Startup Carbon Cleanup hat sich auf das Recycling von Kohlenstofffasern aus Industrieabfällen spezialisiert. Wir haben mit Gründer und CEO Jörg Radanitsch über die weiteren Wachstumsschritte und eine neue Kooperation mit KTM Technologies gesprochen. 
/artikel/carbon-cleanup-portraet

Die Verwendung von Kohlefaser in der Industrie hat in den letzten Jahren stark zugenommen – insbesondere in Bereichen wie der Luft- und Raumfahrt, dem Automobilbau und der Windenergie. Kohlefaser überzeugt durch ihre hohe Festigkeit bei geringem Gewicht, doch ihre Herstellung ist ressourcenintensiv und teuer. Ein großes Problem stellt der hohe Verschnitt bei der Produktion dar: In der Industrie landen im Durschnitt bis zu 30 Prozent der Rohstoffe im Abfall. Diese Materialverluste sind nicht nur ökonomisch ineffizient, sondern auch aus ökologischer Sicht problematisch, da Kohlefaser biologisch nur schwer abbaubar ist.

Carbon Cleanup setzt auf KI

Das 2020 gegründete Linzer Startup Carbon Cleanup rund um Gründer Jörg Radanitsch hat sich diesem Problem angenommen und zum Ziel gesetzt, Kohlenstofffasern aus Industrieabfällen aufzubereiten und wiederverwendbar zu machen. Konkret hat das Startup eine mobile Aufbereitungsanlage entwickelt, um Carbonfasern direkt vor Ort beim Kunden aufzubereiten. 

Zum Herzstück der Anlage gehört nicht nur die mechanische Aufbereitung der Kohlenstofffasern. Im Hintergrund läuft auch eine Software, die eine KI-gestützte visuelle Erkennung der zugeführten Rohstoffe ermöglicht.

“Wir haben ein KI-generiertes Datenblatt entwickelt, das automatisch die Charakteristika von eingehendem Material erkennt und den Wert des Rezyklats bestimmt“, so Radanitsch. “Bevor das Material in unsere Anlage kommt, wissen wir schon, welche mechanischen Eigenschaften es haben wird. Das ist entscheidend für die Qualität und den Marktwert des Endprodukts.”

Gründer Jörg Radanitsch | (c) Carbon Cleanup

Entwicklung der zweiten Generation an Anlagen

Während die erste Anlage des Unternehmens für R&D-Zwecke dient und über eine Kapazität von 30 Tonnen pro Jahr verfügt, konnte das Unternehmen über den Sommer eine zweite Anlage in Betrieb nehmen. „Unsere zweite Anlagengeneration ist im August fertiggestellt worden. Die Produktionskapazität ist dreimal so hoch wie bei unserer ersten Anlage. Damit sind wir jetzt in der Lage, deutlich mehr und auch verschiedene Kompositabfälle zu verarbeiten.“

Besonders stolz ist Radanitsch auf die gestiegene Materialqualität: „Das neue Aggregat ist viel stärker, was uns mehr Flexibilität bei der Verarbeitung der Materialien gibt. Wir können jetzt eine Vielzahl an Abfällen effizienter recyceln, was die Qualität der Produkte erheblich verbessert.“

Ein wichtiger Baustein für den Erfolg von Carbon Cleanup war die Unterstützung durch die Austria Wirtschaftsservice (aws). “Das Seed-Financing der Austria Wirtschaftsservice hat uns erlaubt, nicht nur unsere Forschung und Entwicklung voranzutreiben, sondern auch in Marketingaktivitäten zu investieren, die für uns als Hardware-Startup besonders wichtig sind“, erklärt Radanitsch.

Luftfahrtindustrie und Kooperation mit KTM Technologies

Eine der spannendsten Entwicklungen bei Carbon Cleanup ist der Einsatz ihrer recycelten Materialien im 3D-Druck, besonders in der Luftfahrtindustrie. “Wir liefern im Tonnenmaßstab Kunststoffgranulate, die mit unserer Rezyklatfaser verstärkt sind. Diese werden in großen 3D-Druckern verwendet, um Formen zu bauen, die dann für die Produktion von Flugzeugteilen genutzt werden”, so der Gründer.

Zudem arbeitet Carbon Cleanup mit dem österreichischen Motorradhersteller KTM zusammen. Gemeinsam arbeiten beide Unternehmen an einem geschlossenen Materialkreislauf, bei dem Post-Consumer- und Post-Industrial-Abfälle von KTM Technologies recycelt und für die Herstellung neuer Bauteile genutzt werden. Spezifisch handelt es sich um das Recycling der Teile des Rennmodells “X-Bow GT2”, dessen Rahmen zu 100 % aus Carbonfasern besteht. Durch Unfälle entsteht eine große Menge an beschädigtem Material, das normalerweise als Abfall betrachtet wird. Mit der Partnerschaft von KTM und Carbon Cleanup wird dieses Material zurück in den Kreislauf gebracht. 

(c) Carbon Cleanup

“KTM Technologies war von Anfang an ein Vorreiter. Sie testen unsere recycelten Materialien bereits erfolgreich in ihren Motorrädern“, betont Radanitsch.

Das Besondere an dieser Kooperation ist das sogenannte Closed-Loop-Material, das zu 100 Prozent aus dem Abfallstrom von KTM Technologies besteht. „Die Herausforderung ist, die Materialien zirkulär zu sammeln und in die Produktion zurückzuführen. Das Sammeln und die Qualität sind dabei entscheidend. Aber wir haben gezeigt, dass wir sogar leistungsfähigere Materialien aus Abfall herstellen können”, so der Gründer.

(c) Carbon Cleanup

Die nächsten Schritte von Carbon Cleanup

Das Geschäftsmodell von Carbon Cleanup basiert derzeit auf zwei Einnahmequellen: Zum einen bietet das Unternehmen Kunden einen Recycling-Service an, bei dem diese für die umweltgerechte Entsorgung des Materials bezahlen. Dafür wurde eine eigene Logistikstruktur aufgebaut. Zum anderen werden die Faserverbundkunststoffe an weitere Abnehmer verkauft. Derzeit liefert das Startup 98 Prozent der aufbereiteten Granulate ins Ausland. “Für eingehendes Material sind die Hauptmärkte neben Österreich vor allem Deutschland und Italien. Der Materialzufluss ist für uns derzeit jedoch kein Engpass, sodass wir gezielt das für uns passende Material auswählen können”, so der Gründer abschließend.


*Disclaimer: Das Startup-Porträt erscheint in Kooperation mit Austria Wirtschaftsservice (aws)

Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag

AI Summaries

Lösung gegen KI-Halluzinationen? So funktioniert Sepp Hochreiters SDLG-Methode

AI Kontextualisierung

Welche gesellschaftspolitischen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Lösung gegen KI-Halluzinationen? So funktioniert Sepp Hochreiters SDLG-Methode

AI Kontextualisierung

Welche wirtschaftlichen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Lösung gegen KI-Halluzinationen? So funktioniert Sepp Hochreiters SDLG-Methode

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Innovationsmanager:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Lösung gegen KI-Halluzinationen? So funktioniert Sepp Hochreiters SDLG-Methode

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Investor:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Lösung gegen KI-Halluzinationen? So funktioniert Sepp Hochreiters SDLG-Methode

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Politiker:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Lösung gegen KI-Halluzinationen? So funktioniert Sepp Hochreiters SDLG-Methode

AI Kontextualisierung

Was könnte das Bigger Picture von den Inhalten dieses Artikels sein?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Lösung gegen KI-Halluzinationen? So funktioniert Sepp Hochreiters SDLG-Methode

AI Kontextualisierung

Wer sind die relevantesten Personen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Lösung gegen KI-Halluzinationen? So funktioniert Sepp Hochreiters SDLG-Methode

AI Kontextualisierung

Wer sind die relevantesten Organisationen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Lösung gegen KI-Halluzinationen? So funktioniert Sepp Hochreiters SDLG-Methode