22.05.2020

Künstliche Intelligenz als Chance für die Industrie: ein Leitfaden

Die Coronakrise hat gezeigt, dass es durch Künstliche Intelligenz möglich ist, Kosten nachhaltig zu reduzieren. Das Wiener Software- und KI-Unternehmen craftworks hat einen Leitfaden entwickelt und sich dabei an über 20 erfolgreich umgesetzten KI-Projekten orientiert.
/artikel/kunstliche-intelligenz-als-chance-fur-die-industrie-ein-leitfaden
Künstliche Intelligenz, Industrial AI. AI, KI, Artificial Intelligence, Machine Learning,
(c) craftworks - Das craftworks-Gründerteam Jakob Lahmer (CTO), Simon Grabher (CEO), Michael Hettegger (CSO).

Industrieunternehmen beschäftigen sich seit geraumer Zeit mit der Automatisierung von Produktionsprozessen. Der durch die Krise vorherrschende Druck  zur Einsparung von Kosten zwingt so manches Unternehmen, die Digitalisierung noch schneller voranzutreiben und Künstliche Intelligenz zu implementieren. Doch diese Technologien können die Industrie vor so manche Herausforderung stellen. Allein der Punkt “Datenerfassung” erweist sich als komplexes Gebilde bei dem Schritt, interne Prozesse nachhaltig zu verändern. Hier schreitet der “Industrial AI”-Dienstleister craftworks ein und bietet mit seinem Leitfaden eine Anleitung zur Umsetzung erfolgreicher Prozessoptimierung.

Drei Prozent jährlicher Anstieg des Wirtschaftswachstums durch Künstliche Intelligenz bis 2035

Laut einer Studie von Accenture und Frontier Economics kann Künstliche Intelligenz in Unternehmen das Wachstum ankurbeln. Bei dieser Untersuchung wurden zwölf Volkswirtschaften durchleuchtet und dabei erforscht, wie sich eine umfassende Nutzung von KI in der Wirtschaft auswirkt.

+++ Solvistas CEO Holzbauer: „Eine AI hätte keine Kurzarbeit empfohlen“ +++

Darin heißt es: “Für den Industriestandort Österreich prognostiziert Accenture durch den Einsatz von KI bis 2035 einen Anstieg des Wirtschaftswachstums um jährlich drei Prozent. Das wäre mehr als eine Verdopplung gegenüber dem Basis-Szenario mit einer Wachstumsrate von 1,4 Prozent pro Jahr, welches die zukünftige Entwicklung der Wirtschaft auf Grundlage des technologischen Stands von heute voraussagt”.

KI-Projekte für nachhaltigen Geschäftserfolg

Weiters wird erwartet, dass die Produktivität der Beschäftigten in Österreich dank Künstlicher Intelligenz um 30 Prozent steigen kann, da “sich viele Arbeitsabläufe effizienter gestalten und Mitarbeiter ihren Fokus auf Aufgaben mit einer hohen Wertschöpfung legen”.

In diesem Sinne hat craftworks einen Guide entwickelt, der Projektleiter bei der Umsetzung von KI Prototypen und Rollouts unterstützen soll. “Wenn man erste Erfahrungen mit KI-Projekten sammelt, dann investiert man in nachhaltigen Geschäftserfolg, auch jetzt in der besonders herausfordernden Zeit”, sagt Michael Hettegger, einer der Gründer von craftworks und liefert gleich eine AI-Roadmap mit.

Die wichtigsten Punkte des KI-Guides kurz zusammengefasst

• Vom Use Case zum Business-Case

Der richtigen Use Case zählt zu den fundamentalsten Dingen für ein erfolgreiches Projekt. Man sollte sich hierbei auf jene Prozess-Optimierungen fokussieren, die leichter mittels Künstlicher Intelligenz realisierbar sind, als durch andere Methoden. Dabei ist es wichtig, als ersten Schritt die Abteilung zu wählen, in der man das Pilot-Projekt starten möchte. Etwa R&D, Logistik oder Wartung, um Beispiele zu nennen.

+++ Neue Arbeitswelten durch KI: Wie sich Arbeit in den nächsten Jahren verändert +++

Als nächstes steht an, innerhalb des gewählten Departments den Prozess zu identifizieren, der Optimierungspotential in sich trägt. Faktoren, um für ein Industrial AI-Projekt geeignet zu sein, sind laut craftworks in fünf Punkten auszumachen. Der Prozess sollte komplex sein, eine non-lineare Performance anzeigen, Aufmerksamkeit erregen, wenn plötzliche Anomalien auftreten, der Grund für signifikante Ausschussquoten sein und hohe Kosten nach sich ziehen, falls es zu einem maschinellen Ausfall kommt.

Des Weiteren hängt die Tauglichkeit eines Prozesses für ein “Industrial AI”-Projekt stark von der Generierung von Daten zusammen. Hier wird geraten, dass, wenn eine Prozess-Optimierung in der Theorie hohe Kosteneinsparung verspricht, historische Daten jedoch nicht verfügbar sind, man die “data collection” so schnell wie möglich starten sollte. Als Tipp wird vorgeschlagen, Daten eines ganzen Jahres zu sammeln, um zu entscheiden, ob der Griff zur Künstlichen Intelligenz Sinn macht. Nachdem man den passenden Use-Case gefunden hat, muss laut craftworks eine Kosten-Analyse folgen.

• Die richtige Machine Learning Methode

Der nächste Schritt ist es den gewählten Use-Case mit der besten “Machine-Learning”-Methode zu verbinden. Dabei wird zwischen “supervised learning”, “unsupervised learning” und “reinforcement learning” unterschieden.

Beim ersten lernt ein Algorithmus Verbindungen zu isolieren oder zu kombinieren, die er als Datensatz erhält – um eine vordefinierte Aufgabe (dessen Resultat bekannt ist) so effizient wie möglich zu lösen. Während des Prozesses wird der Algorithmus “überwacht”, um sicherzustellen, dass das “learning” stets Richtung vorgegebener Aufgabe ausgerichtet bleibt.

Unsupervised learning” hingegen umfasst Methoden, die keine vordefinierten Aufgaben benötigen, um zu lernen. Das System versucht Muster im Datensatz zu erkennen, die aufgrund von “Störungen” von der Norm abweichen.

Reinforcement learning” bezieht sich auf “machine-learning”-Methoden, bei dem eine Strategie erlernt wird, um eine definierte Aufgabe zu erfüllen, mittels eines “trial-and-error-“Prozesses. Der Künstlichen Intelligenz wird hierbei nicht aufgetragen nach einer vorbestimmten Art und Weise zum Erfolg zu kommen, sondern sie wird ähnlich dem “Zuckerbrot- und Peitschen-Prinzip” mit positiven oder negativen Belohnungen animiert, eine dominante und problemlösende Strategie zu entwickeln, die nahe an das Optimum herankommen soll.

• Das “perfekte” Daten-Set

Im vorigen Punkt war viel von Daten die Rede. Konkreter wird es in der dritten Phase der Implementierung der Künstlichen Intelligenz in das eigene Unternehmen. Es geht darum geeignete Datensätze zusammenzutragen.

Im Prinzip gilt, dass mehr Daten logischerweise besser sind, als kleine “Data samples”. Allerdings hängt die Menge stark vom Use-Case ab. Als Beispiel nennt der craftworks-Guide, dass 100.000 Datenpunkte sich als zu gering erwiesen haben, um eine exakte Vorhersage zu treffen, wann Lieferautos am Ziel ankommen. Dagegen waren 500 indizierte Produkte als Beispiel schlechter Qualität ausreichend, um gute Ergebnisse in Sachen “predictive quality control” zu erlangen.

+++ Neue digitale Formatreihe NWXnow widmet sich der Zukunft der Arbeit +++

Es wird daher geraten, einen guten Blick auf die Datenqualität zu legen – Dubletten, Formatierungsfehler oder Inkonsistenzen haben einen starken negativen Einfluss auf die KI-Entwicklung. Daten sollten zudem klassifizierbar und relevant sein. Dabei ist es ratsam, sich genau anzusehen, welche Daten fürs “decision-making” und “operations” bereits verwendet wurden. Mit großer Wahrscheinlichkeit lässt sich daraus leicht eine Automatisierung der Daten-Analyse entwickeln.

• Proof of Concept

Bei diesem Punkt macht craftworks vier Punkte aus, die ausschlaggebend dafür sind, inwiefern ein “Machine Learning”-Modell effektiv sein und wie es weiterentwickelt werden kann.

Die Umsetzbarkeits-Studie soll einen ersten Hinweis darauf geben, inwieweit eine AI-Lösung durchführbar ist. Hier werden erste passende Algorithmen evaluiert und das KI-Grundgerüst geschaffen.

In der zweiten Phase widmet man sich der Entwicklung einer Prototyp-Lösung, die mit den Zielen des Use-Case einhergeht. Management und ausgesuchte Mitarbeiter, die mit Daten zu tun haben, kommen an dieser Stelle zum ersten Mal in Kontakt mit der Künstlichen Intelligenz. Dies soll für eine hohe “user acceptance” der Software-Lösung sorgen, während das Projekt Fahrt aufnimmt.

In der Optimierungsphase ist vorrangig das Feedback der Mitarbeiter von Bedeutung und wird in das Projekt implementiert. Danach folgt der Rollout, der noch als “starting point” gilt und für andere Use-Cases skaliert werden kann. Für die ersten drei Schritte wird ein jeweiliger Zeitraum von vier, bei der letzten Phase vier bis zwölf Wochen empfohlen.

• Das Team

Ein wichtiger und selbstverständlicher Hinweis des Guides für die Implementierung der Künstlichen Intelligenz ins Unternehmen betrifft die richtige Auswahl an Mitarbeitern für das Projekt. Jene sollten die nötigen Fertigkeiten und Übersicht in Sachen Prozess-Entwicklung, Daten und Technologie mit sich bringen. Zudem sollte man sich Gedanken machen, wer die nötige IT-Infrastruktur aufsetzen, entwickeln und warten kann.

• Resultate Visualisieren

An dieser Stelle wird darauf hingewiesen, wie wichtig Transparenz des ganzen “Machine Learning”-Prozesses ist. Daten-Analysen sollten in User-freundlicher Manier visualisiert werden, denn wie craftworks sagt: “Die Kombination von ‘human und Articficial Intelligence’ erlangt die besten Resultate.

• “Key Software”-Entscheidungen

Die Wahl richtiger Technologie will wohl durchdacht sein und sollte sich am Ziel des Implementierungsvorhaben orientieren. Der Leitfaden empfiehlt, auf “Open Source”-Technologie zurückzugreifen. Craftworks zeigt sich überzeugt, dass die Entwicklung einer solchen Software seitens der globalen Community Vorteile bringt: eine bessere Qualität und sichere Software-Tools. Durch die Nutzung von “Open Source” entgeht man auch der Abhängigkeit eines einzelnen Providers und kann die IT-Infrastruktur flexibler anpassen, wenn nötig.

+++ So entwickelt sich Österreichs AI Landschaft im Moment +++

Weitere Möglichkeiten technologischer Nutzung umfassen den “Model as a Service”- oder “Model as Dependency”-Approach. Im ersten Fall agiert das Modell unabhängig und kann divers eingesetzt werden. Im zweiten Fall ist es direkt in einer generellen Anwendung integriert. Und macht etwa in einer Pilot-Phase Sinn. Auch können AI-Anwendungen, laut craftworks, problemlos “on-premise” oder als “cloud solution” eingesetzt werden.

• Ständige Optimierung der “Machine Learning”-Modelle

Da sich viele Datensätze im Laufe der Zeit verändern, ist es essentiell das “Industrial AI-System” dynamisch zu halten und ihm Erlaubnisse zu erteilen, Änderungen vorzunehmen.

• Vom Prototypen bis zum globalen Rollout

Nach einem erfolgreichem Pilot-Projekt ist es, so der Guide weiter, an der Zeit, die Künstliche Intelligenz auszuweiten – sie zu skalieren. Neue Use-Cases im Sinn, können genutzte “Machine-Learning”-Modelle als Startpunkt für ähnliche Ziele und Vorhaben genutzt werden. Zudem wird es wichtiger, je größer die Datenmenge wird, Dienstleistungen zu “containerisieren”. Soll heißen, sie einzuteilen und zwar getrennt zu halten, jedoch parallel und unabhängig voneinander innerhalb der gleichen Infrastruktur laufen zu lassen.

• Dokumentation

Am Ende des Leitfadens weist craftworks darauf hin, dass “Industrial AI” kein fertiges Produkt oder fertige Lösung ist, die man man ohne Entwicklungsprozess erstehen kann. Allerdings sorgt ein professionell geführtes AI-Projekt zu einer hohen Lernkurve, die sich positiv auf Folgeprojekte auswirken kann. Daher wird geraten, den Fortschritt zu dokumentieren und zu reflektieren, inwiefern Erfahrungen mit “Machine Learning” in welchen Bereichen lehrreich waren. Denn, wie Hetteger sagt: “Datengetriebene Prozessoptimierung ist kein Innovationsprojekt, das in Zukunft von einem neuen Trend abgelöst wird. ‘Industrial AI’ wird zur Grundlage für Marktführerschaft”.


⇒ craftworks

⇒ KI-Guide zum Download (Englisch)

Redaktionstipps
Deine ungelesenen Artikel:
20.12.2024

Von Boom bis Krise: Zehn Jahre Startup-Szene in Zahlen

Welche Branchen sind heute besonders gefragt? Wie viel Kapital wird investiert? Und wie hat sich der Anteil von Frauen unter den Gründer:innen entwickelt? Seit der Gründung von brutkasten hat sich die heimische Startup-Szene laufend verändert. Wie sehr, zeigen der Austrian Startup Monitor (ASM) und das Ernst & Young (EY) Startup-Barometer - sie erheben jährlich wertvolle Daten über die österreichische Startup-Szene. Wir ziehen Bilanz: eine Datenanalyse.
/artikel/von-boom-bis-krise-startups-im-wandel-der-zeit
20.12.2024

Von Boom bis Krise: Zehn Jahre Startup-Szene in Zahlen

Welche Branchen sind heute besonders gefragt? Wie viel Kapital wird investiert? Und wie hat sich der Anteil von Frauen unter den Gründer:innen entwickelt? Seit der Gründung von brutkasten hat sich die heimische Startup-Szene laufend verändert. Wie sehr, zeigen der Austrian Startup Monitor (ASM) und das Ernst & Young (EY) Startup-Barometer - sie erheben jährlich wertvolle Daten über die österreichische Startup-Szene. Wir ziehen Bilanz: eine Datenanalyse.
/artikel/von-boom-bis-krise-startups-im-wandel-der-zeit
Grafiken zur Startup Entwicklung Österreich
Eigene Grafiken, Karte Rechts (c) ASM
mit Visuals

Dieser Artikel erschien zuerst in der Jubiläumsausgabe unseres Printmagazins. Ein Link zum Download findet sich am Ende des Artikels.

Es ist das Jahr 2014, brutkasten wurde soeben gegründet. Im September launcht Bitpanda, damals noch unter dem Namen Coinimal, Runtastic bringt ein Fitnessarmband auf den Markt und Shpock steht kurz vor der Übernahme durch den norwegischen Medienkonzern Schibsted. Die Startup-Szene boomt.

Das alles ist heute zehn Jahre her. Eine lange Zeit, in der in der österreichischen Startup-Szene einiges passiert ist – Erfolgsstorys von großen Exits werden geschrieben, Investor:innen stecken Millionenbeträge in junge Unternehmen, staatliche Gesellschaften wie die FFG vergeben jährlich 100 Millionen Euro für Projekte von Startups. Aber auch Krisen wie die Covid-19-Pandemie erschütterten die Wirtschaft – immer wieder werden Startups insolvent.

All diese Veränderungen versucht der Austrian Startup Monitor (ASM) festzuhalten, hinter dem das Austrian Institute of Technology (AIT) steht. Durch jährliche Umfragen erhebt die Forschungseinrichtung wichtige Daten, die einen Überblick über die Welt der Startups liefern. Diese Daten wurden brutkasten exklusiv zur Verfügung gestellt. Wir haben uns an – gesehen, was sich in den letzten zehn Jahren in der österreichischen Startup-Szene verändert hat.

Gründungsland Österreich

Beginnen wir mit den Neugründungen. Insgesamt 277 Startups wurden 2014 – im Entstehungsjahr von brutkasten gegründet. Anschließend stieg die Anzahl der Gründungen jährlich, bis der Wert 2017 mit 379 Startups seinen bisherigen Höhepunkt erreichte.

Was die Daten des ASM ebenfalls zeigen, ist ein kleiner Rückgang im ersten Jahr der Covid-19-Pandemie. Doch die Startup-Szene erholt sich schnell, bereits 2021 befinden sich die Neugründungen wieder auf Vorkrisenniveau. Aufgrund der vom AIT ausgewählten Suchstrategien, scheinen neu gegründete Startups erst mit einer zeitlichen Verzögerung bis zu zwei Jahren in den Daten auf. Doch für 2022 bis heute wird, ähnlich der Werte aus Deutschland, eine stabile Anzahl an Neugründungen erwartet  – wenn auch mit einem leichten Rückgang.

Investments: Mehr Deals, Gesamtsumme aber zuletzt rückläufig

Dass Startups über die Jahre vor allem wirtschaftlich immer relevanter werden, zeigen auch die Daten des jährlich erscheinenden EY Start-up-Barometer. Die Studie verrät, dass die Anzahl der Investments für österreichische Startups im vergangenen Jahr ein Rekordhoch erreicht hat. Noch nie zuvor wurden so viele Deals abgeschlossen.

Hier lohnt sich jedoch der Blick auf die Gesamtsumme der Investments. Denn 2023 waren die Investmentbeträge zum zweiten Mal rückläufig. Wie die Daten von EY zeigen, wurden 2023 zwar weit mehr Investments abgeschlossen als jemals zuvor, allerdings gab es keinen einzigen Großdeal im Umfang über 100 Millionen Euro.

2021 war die Anzahl an Investments zwar noch um einiges niedriger als 2023, allerdings katapultierte die Anzahl an Großdeals - wie etwa jene von Bitpanda oder GoStudent - die Summe in eine noch nie da gewesene Höhe. Über 1,2 Milliarden Euro wurde damals in Startups investiert  – mehr als die Hälfte davon alleine durch Großdeals.

Startups werden immer höher bewertet

Neben der Anzahl an Investments steigt auch die Bewertungen der Startups kontinuierlich. Aus den Daten des ASM geht hervor, dass die Investor:innen 2019 noch den Großteil der Startups mit weniger als 2,5 Millionen Euro bewertet haben. Doch bereits im Jahr darauf hat sich alles geändert: Mehr als die Hälfte der Startups erhielt eine Bewertung über dem Schwellwert. 

Seitdem sind die Bewertungen jährlich gestiegen. Im vergangenen Jahr kamen 44 Prozent der heimischen Startups auf eine Bewertung von mehr als fünf Millionen Euro  –  so hoch war der Wert noch nie. Einige Startups haben Bewertungen von über 100 Millionen Euro erreicht.

Startup-Gründung: eine Frage des Geldes

Insgesamt steigt zwar die Anzahl der Investments und auch die Bewertungen. Doch auf welche Finanzierungsformen setzen österreichische Startups überhaupt in welchem Ausmaß?

Die Daten zeigen: Bootstrapping bleibt nach wie vor häufigste Finanzierungsform. Zwei von drei Founder:innen finanzieren ihr Startup aus eigenen Mitteln. Allerdings ist der prozentuale Anteil an eigenfinanzierten Startups seit 2018 stark zurückgegangen. Vor sechs Jahren wurden noch 81 Prozent der Startups gebootstrappt - letztes Jahr waren es nur noch 66 Prozent.

Auch hier zeigt sich, dass öffentliche Förderungen aktuell wieder häufiger werden. Rund die Hälfte der Startups erhielt nationale Unterstützungen. Auch gaben mehr als ein Viertel der Startups an, sich aus dem Cashflow zu finanzieren. Daneben hat gut jedes vierte Startup einen Business Angel hinter sich. Hingegen spielen Finanzierungsmethoden wie Crowdfunding nur mehr eine sehr geringe eine Rolle.

Beliebte Branchen

Vor zehn Jahren war Künstliche Intelligenz noch weitaus weniger verbreitet als heute. Doch die Grundsteine waren bereits gelegt. Aus den Fortschritten im maschinellen Lernen gingen die ersten Pioniere hervor: 2014 übernahm Google das Startup DeepMind und bald danach wurde auch OpenAI gegründet - das Unternehmen hinter der beliebtesten KI ChatGPT. Es sollte aber noch einige Jahre dauern, bis KI auch die österreichische Startup-Szene umkrempelt.

Was aus der Grafik hervorgeht ist, dass IT & Software prozentual gesehen nach wie vor die dominierende Branche bleibt. Startups in der Branche der Life Sciences bekamen in den vergangenen Jahren starken Zuwachs. Ein Rückgang hingegen gab es bei den Anteilen an Hardware-Startups. Sie verlieren über die Jahre immer mehr an Bedeutung – verhältnismäßig setzen sich auch immer weniger Jungunternehmen in der industriellen Technologie an.

Dass Life-Science-Startups beliebter werden, zeigt sich auch bei den Gründungsformen. Akademische Startups, also Unternehmen, die als Spin-Off an einer Universität oder an einer Fachhochschule entstanden sind, machen heute knapp ein Viertel aller Gründungen aus. Aber dennoch: Mehr als jedes zweite Startup wird weiterhin unabhängig gegründet.

Frauen in den Gründungen

Auch der Frauenanteil in den Gründungsteams verändert sich. Nach den Daten des ASM waren vor sechs Jahren nur rund zwölf Prozent der Gründer:innen Frauen, während insgesamt 29 Prozent der österreichischen Gründungsteams zumindest eine Frau im Team hatten.

Bis 2022 stieg der Frauenanteil in den Gründungsteams auf rund 39 Prozent, bevor er vergangenes  Jahr wieder leicht zurückging. Der Anteil der Gründerinnen insgesamt hat sich bei etwa 17 Prozent eingependelt – auch dieser Wert ist leicht rückläufig.

Startups-Teams wachsen

Anhand der Anzahl der Mitarbeiter:innen zeigt sich: Startups wachsen. Vor sechs Jahren, also 2018, waren durchschnittlich 8,2 Mitarbeitende pro Startups angestellt. Nur drei Jahre später, 2021, waren es mit 12,3 Mitarbeiter:innen bereits um die Hälfte mehr. Auch im vergangenen Jahr waren durchschnittlich wieder 12,3 Mitarbeitende pro Startup angestellt.

In welchen Bereichen werden Mitarbeitenden eingesetzt? Am meisten gefragt ist nach wie vor IT und Softwareentwicklung. Jährlich gaben mehr als 40 Prozent der heimischen Startups an, dass sie hierbei Probleme in der Besetzung haben – 2022 war es sogar die Hälfte aller Startups.

Auch Positionen im Sales und in der Produktentwicklung sind gefragt – mehr als ein Viertel der Startups sucht ergiebig nach Angestellten.

Finanzielle Realität

Doch wie viel Umsatz machen die Startups am Ende des Jahres wirklich? Die Antwort wirkt etwas ernüchternd: Nach wie vor geben etwas mehr als ein Viertel der heimischen Startups an, keinen Umsatz zu machen. Ein weiteres Viertel hingegen äußert, dass sie einen Umsatz bis 50.000 Euro hatten – auch dieser Wert bleibt über die Jahre unverändert.

Immerhin kann die andere Hälfte von sich behaupten, einen Umsatz zu erwirtschaften, der darüber liegt. Nicht nur das, auch gibt mehr als jedes zehnte Startup an, bereits einen Umsatz über einer Million Euro zu haben.

Sichere dir das brutkasten-Magazin in digitaler Form!
Trag dich hier ein und du bekommst das aktuelle brutkasten-Magazin als PDF zugeschickt und kannst sofort alle Artikel lesen! Du erhältst mit der Anmeldung künftig auch Zugang für unseren Startup-Newsletter, den wir drei Mal pro Woche verschicken. Du kannst dich jederzeit unkompliziert wieder abmelden.

Die Daten, die wir für diesen Artikel verwenden, wurden dem brutkasten vom Austrian Startup Monitoring (ASM) zur Verfügung gestellt, sowie vom EY Start-up Investment Barometer Österreich 2023 abgerufen. Das ASM wird vom Austrian Institute of Technology (AIT) an der Wirtschaftsuniversität Wien durchgeführt. Jährlich befragt die Forschungseinrichtung die österreichische Startup-Szene empirisch. https://austrianstartupmonitor.at/


Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag

AI Summaries

Künstliche Intelligenz als Chance für die Industrie: ein Leitfaden

  • Industrieunternehmen beschäftigen sich seit geraumer Zeit mit der Automatisierung von Produktionsprozessen.
  • Der vorherrschende Druck der aktuellen Krise Kosten an jeder Stelle einzusparen, zwingt so manches Unternehmen die Digitalisierung noch schneller voranzutreiben und Künstliche Intelligenz zu implementieren.
  • Allein der Punkt “Datenerfassung” erweist sich als komplexes Gebilde bei dem Schritt interne Prozesse nachhaltig zu verändern.
  • Hier schreitet der Industrial AI-Dienstleister craftworks ein und bietet mit seinem Leitfaden eine Anleitung zur Umsetzung erfolgreicher Prozessoptimierung.
  • Dabei ist es wichtig als ersten Schritt die Abteilung zu wählen, in der man das Pilot-Projekt starten möchte.
  • Als Tipp wird vorgeschlagen Daten eines ganzen Jahres zu sammeln, um zu entscheiden, ob der Griff zur Künstlichen Intelligenz Sinn macht.
  • Da sich viele Datensätze im Laufe der Zeit verändern, ist es essentiell das “Industrial AI-System” dynamisch zu halten und ihm Erlaubnisse zu erteilen, Änderungen vorzunehmen.

AI Kontextualisierung

Welche gesellschaftspolitischen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Künstliche Intelligenz als Chance für die Industrie: ein Leitfaden

  • Industrieunternehmen beschäftigen sich seit geraumer Zeit mit der Automatisierung von Produktionsprozessen.
  • Der vorherrschende Druck der aktuellen Krise Kosten an jeder Stelle einzusparen, zwingt so manches Unternehmen die Digitalisierung noch schneller voranzutreiben und Künstliche Intelligenz zu implementieren.
  • Allein der Punkt “Datenerfassung” erweist sich als komplexes Gebilde bei dem Schritt interne Prozesse nachhaltig zu verändern.
  • Hier schreitet der Industrial AI-Dienstleister craftworks ein und bietet mit seinem Leitfaden eine Anleitung zur Umsetzung erfolgreicher Prozessoptimierung.
  • Dabei ist es wichtig als ersten Schritt die Abteilung zu wählen, in der man das Pilot-Projekt starten möchte.
  • Als Tipp wird vorgeschlagen Daten eines ganzen Jahres zu sammeln, um zu entscheiden, ob der Griff zur Künstlichen Intelligenz Sinn macht.
  • Da sich viele Datensätze im Laufe der Zeit verändern, ist es essentiell das “Industrial AI-System” dynamisch zu halten und ihm Erlaubnisse zu erteilen, Änderungen vorzunehmen.

AI Kontextualisierung

Welche wirtschaftlichen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Künstliche Intelligenz als Chance für die Industrie: ein Leitfaden

  • Industrieunternehmen beschäftigen sich seit geraumer Zeit mit der Automatisierung von Produktionsprozessen.
  • Der vorherrschende Druck der aktuellen Krise Kosten an jeder Stelle einzusparen, zwingt so manches Unternehmen die Digitalisierung noch schneller voranzutreiben und Künstliche Intelligenz zu implementieren.
  • Allein der Punkt “Datenerfassung” erweist sich als komplexes Gebilde bei dem Schritt interne Prozesse nachhaltig zu verändern.
  • Hier schreitet der Industrial AI-Dienstleister craftworks ein und bietet mit seinem Leitfaden eine Anleitung zur Umsetzung erfolgreicher Prozessoptimierung.
  • Dabei ist es wichtig als ersten Schritt die Abteilung zu wählen, in der man das Pilot-Projekt starten möchte.
  • Als Tipp wird vorgeschlagen Daten eines ganzen Jahres zu sammeln, um zu entscheiden, ob der Griff zur Künstlichen Intelligenz Sinn macht.
  • Da sich viele Datensätze im Laufe der Zeit verändern, ist es essentiell das “Industrial AI-System” dynamisch zu halten und ihm Erlaubnisse zu erteilen, Änderungen vorzunehmen.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Innovationsmanager:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Künstliche Intelligenz als Chance für die Industrie: ein Leitfaden

  • Industrieunternehmen beschäftigen sich seit geraumer Zeit mit der Automatisierung von Produktionsprozessen.
  • Der vorherrschende Druck der aktuellen Krise Kosten an jeder Stelle einzusparen, zwingt so manches Unternehmen die Digitalisierung noch schneller voranzutreiben und Künstliche Intelligenz zu implementieren.
  • Allein der Punkt “Datenerfassung” erweist sich als komplexes Gebilde bei dem Schritt interne Prozesse nachhaltig zu verändern.
  • Hier schreitet der Industrial AI-Dienstleister craftworks ein und bietet mit seinem Leitfaden eine Anleitung zur Umsetzung erfolgreicher Prozessoptimierung.
  • Dabei ist es wichtig als ersten Schritt die Abteilung zu wählen, in der man das Pilot-Projekt starten möchte.
  • Als Tipp wird vorgeschlagen Daten eines ganzen Jahres zu sammeln, um zu entscheiden, ob der Griff zur Künstlichen Intelligenz Sinn macht.
  • Da sich viele Datensätze im Laufe der Zeit verändern, ist es essentiell das “Industrial AI-System” dynamisch zu halten und ihm Erlaubnisse zu erteilen, Änderungen vorzunehmen.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Investor:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Künstliche Intelligenz als Chance für die Industrie: ein Leitfaden

  • Industrieunternehmen beschäftigen sich seit geraumer Zeit mit der Automatisierung von Produktionsprozessen.
  • Der vorherrschende Druck der aktuellen Krise Kosten an jeder Stelle einzusparen, zwingt so manches Unternehmen die Digitalisierung noch schneller voranzutreiben und Künstliche Intelligenz zu implementieren.
  • Allein der Punkt “Datenerfassung” erweist sich als komplexes Gebilde bei dem Schritt interne Prozesse nachhaltig zu verändern.
  • Hier schreitet der Industrial AI-Dienstleister craftworks ein und bietet mit seinem Leitfaden eine Anleitung zur Umsetzung erfolgreicher Prozessoptimierung.
  • Dabei ist es wichtig als ersten Schritt die Abteilung zu wählen, in der man das Pilot-Projekt starten möchte.
  • Als Tipp wird vorgeschlagen Daten eines ganzen Jahres zu sammeln, um zu entscheiden, ob der Griff zur Künstlichen Intelligenz Sinn macht.
  • Da sich viele Datensätze im Laufe der Zeit verändern, ist es essentiell das “Industrial AI-System” dynamisch zu halten und ihm Erlaubnisse zu erteilen, Änderungen vorzunehmen.

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Politiker:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Künstliche Intelligenz als Chance für die Industrie: ein Leitfaden

  • Industrieunternehmen beschäftigen sich seit geraumer Zeit mit der Automatisierung von Produktionsprozessen.
  • Der vorherrschende Druck der aktuellen Krise Kosten an jeder Stelle einzusparen, zwingt so manches Unternehmen die Digitalisierung noch schneller voranzutreiben und Künstliche Intelligenz zu implementieren.
  • Allein der Punkt “Datenerfassung” erweist sich als komplexes Gebilde bei dem Schritt interne Prozesse nachhaltig zu verändern.
  • Hier schreitet der Industrial AI-Dienstleister craftworks ein und bietet mit seinem Leitfaden eine Anleitung zur Umsetzung erfolgreicher Prozessoptimierung.
  • Dabei ist es wichtig als ersten Schritt die Abteilung zu wählen, in der man das Pilot-Projekt starten möchte.
  • Als Tipp wird vorgeschlagen Daten eines ganzen Jahres zu sammeln, um zu entscheiden, ob der Griff zur Künstlichen Intelligenz Sinn macht.
  • Da sich viele Datensätze im Laufe der Zeit verändern, ist es essentiell das “Industrial AI-System” dynamisch zu halten und ihm Erlaubnisse zu erteilen, Änderungen vorzunehmen.

AI Kontextualisierung

Was könnte das Bigger Picture von den Inhalten dieses Artikels sein?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Künstliche Intelligenz als Chance für die Industrie: ein Leitfaden

  • Industrieunternehmen beschäftigen sich seit geraumer Zeit mit der Automatisierung von Produktionsprozessen.
  • Der vorherrschende Druck der aktuellen Krise Kosten an jeder Stelle einzusparen, zwingt so manches Unternehmen die Digitalisierung noch schneller voranzutreiben und Künstliche Intelligenz zu implementieren.
  • Allein der Punkt “Datenerfassung” erweist sich als komplexes Gebilde bei dem Schritt interne Prozesse nachhaltig zu verändern.
  • Hier schreitet der Industrial AI-Dienstleister craftworks ein und bietet mit seinem Leitfaden eine Anleitung zur Umsetzung erfolgreicher Prozessoptimierung.
  • Dabei ist es wichtig als ersten Schritt die Abteilung zu wählen, in der man das Pilot-Projekt starten möchte.
  • Als Tipp wird vorgeschlagen Daten eines ganzen Jahres zu sammeln, um zu entscheiden, ob der Griff zur Künstlichen Intelligenz Sinn macht.
  • Da sich viele Datensätze im Laufe der Zeit verändern, ist es essentiell das “Industrial AI-System” dynamisch zu halten und ihm Erlaubnisse zu erteilen, Änderungen vorzunehmen.

AI Kontextualisierung

Wer sind die relevantesten Personen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Künstliche Intelligenz als Chance für die Industrie: ein Leitfaden

  • Industrieunternehmen beschäftigen sich seit geraumer Zeit mit der Automatisierung von Produktionsprozessen.
  • Der vorherrschende Druck der aktuellen Krise Kosten an jeder Stelle einzusparen, zwingt so manches Unternehmen die Digitalisierung noch schneller voranzutreiben und Künstliche Intelligenz zu implementieren.
  • Allein der Punkt “Datenerfassung” erweist sich als komplexes Gebilde bei dem Schritt interne Prozesse nachhaltig zu verändern.
  • Hier schreitet der Industrial AI-Dienstleister craftworks ein und bietet mit seinem Leitfaden eine Anleitung zur Umsetzung erfolgreicher Prozessoptimierung.
  • Dabei ist es wichtig als ersten Schritt die Abteilung zu wählen, in der man das Pilot-Projekt starten möchte.
  • Als Tipp wird vorgeschlagen Daten eines ganzen Jahres zu sammeln, um zu entscheiden, ob der Griff zur Künstlichen Intelligenz Sinn macht.
  • Da sich viele Datensätze im Laufe der Zeit verändern, ist es essentiell das “Industrial AI-System” dynamisch zu halten und ihm Erlaubnisse zu erteilen, Änderungen vorzunehmen.

AI Kontextualisierung

Wer sind die relevantesten Organisationen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Künstliche Intelligenz als Chance für die Industrie: ein Leitfaden

  • Industrieunternehmen beschäftigen sich seit geraumer Zeit mit der Automatisierung von Produktionsprozessen.
  • Der vorherrschende Druck der aktuellen Krise Kosten an jeder Stelle einzusparen, zwingt so manches Unternehmen die Digitalisierung noch schneller voranzutreiben und Künstliche Intelligenz zu implementieren.
  • Allein der Punkt “Datenerfassung” erweist sich als komplexes Gebilde bei dem Schritt interne Prozesse nachhaltig zu verändern.
  • Hier schreitet der Industrial AI-Dienstleister craftworks ein und bietet mit seinem Leitfaden eine Anleitung zur Umsetzung erfolgreicher Prozessoptimierung.
  • Dabei ist es wichtig als ersten Schritt die Abteilung zu wählen, in der man das Pilot-Projekt starten möchte.
  • Als Tipp wird vorgeschlagen Daten eines ganzen Jahres zu sammeln, um zu entscheiden, ob der Griff zur Künstlichen Intelligenz Sinn macht.
  • Da sich viele Datensätze im Laufe der Zeit verändern, ist es essentiell das “Industrial AI-System” dynamisch zu halten und ihm Erlaubnisse zu erteilen, Änderungen vorzunehmen.