02.08.2017

Klarna launcht Wavy: Per Sticker Geld anfragen und senden

Mit Wavy launcht die schwedische Bank Klarna diese Woche ein neues, innovatives Produkt mit dem das Geldüberweisen noch einfacher werden soll. Ab sofort kann man mit Wavy in Österreich und dreißig anderen Ländern mit einem generierten Zahlungslink per Social Media Geld anfragen und senden. Der Brutkasten durfte mit Lamine Cheloufi zum Launch von Wavy sprechen und auch nachfragen, was sein ehemaliges Startup "Cookies" damit zu tun hat.
/artikel/klarna-launcht-wavy-app
Klarna-CEO Sebastian Siemiatkowski mit Lamine Cheloufi, Product Director beim Testen von "Wavy".

Per App oder per Link via Social Media – mit Wavy soll das Überweisen von Geldbeträgen noch einfacher werden. Zahlungsempfänger müssen sich dafür nicht einmal anmelden. Das neue Produkt von Klarna namens “Wavy” funktioniert dabei nicht nur mit Klarna Konto, jeder kann die App downloaden und Wavy nutzen. In 31 Ländern wurde das Produkt diese Woche gelauncht. Neben 28 EU-Mitgliedsstaaten, kann man Wavy auch in Norwegen, Island und Liechtenstein nutzen.

Wavy generiert Zahlungslink

Der Usecase ist einfach erklärt: Es ist Sonntag. Man befindet sich am Flohmarkt ums Eck und möchte unbedingt die Komode kaufen, die an einem Stand angeboten wird. Doch man hat nicht genug Geld mit und der nächste Geldautomat ist zu weit weg… Die Lösung dafür ist Wavy. Per Knopfdruck kann man einen Zahlungslink generieren, den man via Airdrop, Messenger, Whatsapp und anderen Kanälen verteilen kann. Somit auch an den Verkäufer. Dieser muss sich dafür die Wavy-App auch nicht herunterladen.

Wavy-Team: Zum richtigen Moment am richtigen Ort

Das Team hinter Wavy ist kein Unbekanntes. Mit “Cookies” wurde bereits eine p2p-Lösung im letzten Jahr gelauncht. Bereits damals arbeitete man an einer Lösung, die das Geldüberweisen einfacher machen sollte. Doch kurz nach dem Launch, kam damals die Insolvenz.

Klarna-CEO Sebastian Siemiatkowski mit Lamine Cheloufi, Product Director.

Der Traum des Cookies-Team sollte allerdings nicht zu Ende sein, denn das schwedische Unternehmen Klarna holte das Team zu sich. Cookies-Gründer Lamine Cheloufi hatte den Klarna-Gründer und CEO Sebastian Siemiatkowski wenige Monate zuvor durch einen Zufall kennengelernt: Nach der Money2020 Konferenz in Kopenhagen im April 2016 half Siemiatkowski mit seinem Kommentar (“Ich kenne das Team, die sind gut”) einen der Partner von Sequoia Capital vom Team zu beeindrucken.

Mit dem Brutkasten spricht Cheloufi nun darüber, welche Learnings er von Cookies mitgenommen hat, wie es war, nach der Insolvenz bei Klarna anzufangen und woran Wavy als Standalone-Produkt verdient.

Ein paar Leser erinnern sich bestimmt noch an Cookies, ebenfalls ein p2p -Zahlungsdienst. Was sind denn die größten Unterschiede zwischen den beiden Produkten?

Es gibt vier große Unterschiede. Zum einen sind wir mit Wavy europaweit unterwegs: Wir gehen in 31 Ländern live. In den nächsten Wochen und Monaten bauen wir noch Währungskurse ein – die sind noch nicht drin, einstweilen kann man nur in Euro zahlen. Zum zweiten, es gibt jetzt einen Zahlungslink. Dieser Link kann über deine vertrauten Social Media Kanäle (WhatsApp, Facebook Messenger …) geteilt werden. Und ein weiterer Unterschied ist, dass der Empfänger des Zahlungslink sich nicht anmelden muss um die Zahlung zu erhalten. Stattdessen wird der Empfänger aufgefordert seinen Namen sowie seine IBAN anzugeben. Ich kann Geld anfragen oder schicken, ohne dass ich die App downloaden muss. Und der vierte Punkt: Wir unterstützen alle gängigen Zahlungsweisen. Zahlung mittels SEPA Lastschrift folgt in den kommenden Wochen.

Gibt es ein Learning, das du nach der Insolvenz von Cookies mitgenommen und direkt bei Wavy umsetzen konntest?

Ja: Gründen ist nicht einfach. Der Akt, eine GmbH zu gründen ist nicht kompliziert, aber alles weitere, wie das Managen der Stakeholder, Investoren, des Teams usw. schon. Als FinTech hat man noch zusätzliche Hürden überwinden, zb.: Anti-Geldwäsche-Richtlinien, Prävention von Terrorismusfinanzierung, Banken Sicherheitsstandards, Informationssicherheit, Datenschutz etc. Darüber hinaus habe ich gelernt früh auf das Team zu hören um Anpassungen vornehmen zu können.

Klarna hat nach der Insolvenz von Cookies einen Großteil des Teams übernommen. Wie war das vom unabhängigen Startup in ein strukturiertes Unternehmen eingegliedert zu werden?

(c) Wavy Screenshot

Wir haben eineinhalb Jahre an Cookies gearbeitet und sind endlich live gegangen- und dann kam die Insolvenz. Das hat weh getan und war ein sehr ernüchternder Rückschlag. Doch Klarna hat uns wieder zehn Schritte nach vorne geworfen. Wir konnten bei Wavy auf die volle Infrastruktur von Klarna zugreifen. Zum Beispiel, wird Wavy von einem Team an Sicherheitsexperten betreut. Wir haben einen eigenen Datenschutzbeauftragten, der sich nur um Wavy kümmert und noch vieles mehr. Die Klarna Infrastruktur gibt uns auch die Möglichkeit Zahlungen über Kreditkarten abzuwickeln sowie über Klarna’s SOFORT Überweisung. Seit Kurzem ist “Visa” als strategischer Partner investiert. So viele Vorteile, die du als kleines Startup natürlich nicht hast.

Und trotzdem: Cookies war dein eigenes Startup, nun arbeitest du für ein Unternehmen. Stört dich das nicht?

Klarna ist zwar ein großes Corporate, aber so fühlt es sich nicht an. Das hat viele Gründe, aber es liegt sicherlich auch daran, dass der Gründer Sebastian immer noch CEO ist und bei Klarna alle miteinander auf Augenhöhe sprechen. Im ersten Moment musste ich natürlich stark umdenken. Aber dann, wenn man sich die Vorteile ansieht, ist es alles andere als schlimm. Klarna gibt uns die Möglichkeit das zu tun was wir am besten können: nutzerfreundliche Produkte zu entwickeln. Wir arbeiten an einer Lösung für Europa und für die bestehenden 60+ Millionen Klarna-Nutzer. Und dann habe ich auch noch tolle Mentoren, von denen ich noch viel lernen kann.

Wavy ist nicht nur ein Produkt für Klarna Kunden, jeder kann es als Zahlungsmethode verwenden. Aber, woran verdient Wavy?

Klassisch wie andere Lösungen im p2p-Payment. Das Endziel eines p2p-Players ist es irgendwann einmal als Zahlungsmethode bei Händlern verbreitet zu sein. Klarna ist hier schon seit über 10 Jahren unterwegs und hat über 70.000 Händler angebunden. Das ist nicht nur beeindruckend sondern auch hilfreich um mehr Relevanz in Europa aufzubauen.

Zahlen per Chatbot- etwas, woran ihr arbeitet?

Chatbots sind definitiv interessant und bringen ein großes Potential mit sich. In Zukunft können wir uns vorstellen hier aktiver zu sein, aber dafür muss die Experience stimmen. Chatbots müssen einfach verstehen können, was ich als Nutzer möchte, um sinnvoll darauf zu reagieren.

Vielen Dank!

Deine ungelesenen Artikel:
vor 3 Stunden

“Der größte Feind ist Zettel und Bleistift”: Erfolgsfaktoren und Herausforderungen in der KI-Praxis

Nachlese. Der Hype um künstliche Intelligenz ist längst im Rollen. Doch wie schaffen Unternehmen den Durchbruch in der Praxis? In der dritten Folge der neuen brutkasten-Serie “No Hype KI” schildern Expert:innen, welche Erfolgsfaktoren wirklich zählen und wie sich Herausforderungen souverän meistern lassen - von Datenlücken bis hin zur Einbindung der Belegschaft. Klar wird, dass die Technik nur ein Teil der Gleichung ist.
/artikel/no-hype-ki-folge-3
vor 3 Stunden

“Der größte Feind ist Zettel und Bleistift”: Erfolgsfaktoren und Herausforderungen in der KI-Praxis

Nachlese. Der Hype um künstliche Intelligenz ist längst im Rollen. Doch wie schaffen Unternehmen den Durchbruch in der Praxis? In der dritten Folge der neuen brutkasten-Serie “No Hype KI” schildern Expert:innen, welche Erfolgsfaktoren wirklich zählen und wie sich Herausforderungen souverän meistern lassen - von Datenlücken bis hin zur Einbindung der Belegschaft. Klar wird, dass die Technik nur ein Teil der Gleichung ist.
/artikel/no-hype-ki-folge-3
Die dritte Folge von "No Hype KI" mit Manuel Moser, Alexandra Sumper, Moritz Mitterer und Clemens Wasner (v.l.n.r.) (c) brutkasten

„No Hype KI” wird unterstützt von CANCOM Austria, IBM, ITSV, Microsoft, Nagarro, Red Hat und Universität Graz.


Wie lässt sich KI “richtig” in Unternehmen integrieren? Wieso erleben Unternehmen einen “Bottom-Up-Push” und warum sprechen viele dabei noch von großen Hürden? Um diese und viele weitere Fragen ging es in der dritten Folge von “No Hype KI”. Zu Gast waren Alexandra Sumper von Nagarro, Manuel Moser von CANCOM Austria, Moritz Mitterer von ITSV sowie Clemens Wasner von AI Austria und EnliteAI.

Du willst bei "No Hype KI" am Laufenden bleiben?

Trag dich hier ein und du bekommst jede Folge direkt in die Inbox!

Der Bottom-Up-Push

“Der AI-Hype ist jetzt circa zehn Jahre alt”, startet Clemens Wasner die Diskussionsrunde. Was als “vorausschauende Warnung und Betrugserkennung” im B2B-Sektor begann, hat sich eine knappe Dekade später zu einer Bottom-Up-Push-Bewegung entwickelt. “Einzelne Mitarbeitende verfügen teilweise über weitaus mehr praktische Erfahrung mit Generativer KI”, als “das oft auf einer Projektebene passiert”, so Wasner.

Um KI federführend in Unternehmen zu verankern, sei es wichtiger denn je, Mitarbeitende einzubinden und ihnen intern eine Bühne für den Best-Practice-Austausch zu geben, erklärt Wasner weiter. Aktuell ginge der KI-Push immer intensiver von Mitarbeiter:innen aus. Vergleichbar sei diese Bewegung mit dem Aufkommen der Smartphones vor etwa fünfzehn Jahren.

Daten mit Qualität

Als Basis sollte zuerst allerdings der Datenhaushalt eines Unternehmens sauber strukturiert und reguliert werden, sagt Manuel Moser, Director Digital Innovation & Software Engineering bei CANCOM Austria. “Wenn ein Unternehmen in puncto Daten hinterherhinkt, kann das jetzt durchaus ein Stolperstein sein”, sagt der Experte. In CRM- und ERP-Systemen finden sich häufig unvollständige Angaben. Die dadurch entstehende unzureichende Datenqualität könne jede KI-Initiative ins Stocken bringen, so Moser.

“Der größte Feind ist Zettel und Bleistift”

Schon allein das Notieren von Informationen auf Zetteln gilt nicht nur als scheinbar banale Hürde, wie Moser im Talk erläutert. Analoge Gewohnheiten können enorme Auswirkungen auf den gesamten Digitalisierungsprozess des Unternehmens haben: “Ich sage immer: Bei Digitalisierungslösungen ist der größte Feind der Zettel und der Bleistift am Tisch, mit denen man das digitale Tool am Ende des Tages umgeht.”

Gerade der öffentliche Sektor sollte im KI-Einsatz sowie in der Verwaltung von Daten sorgfältig agieren. Moritz Mitterer, Aufsichtsratsvorsitzender der ITSV, spricht von besonders sensiblen Daten aus der Sozialversicherung, die ein enges rechtliches Korsett und damit ein höheres Maß an Vorsicht mit sich bringen.

“Wir haben 2017 in der ITSV damit begonnen, innerhalb der Struktur damit zu experimentieren”, erzählt Mitterer. Ein essentielles Learning daraus: Gerade große Prozessmengen stellen sich als ideales Feld für KI heraus – wenn man vernünftige Leitplanken, klare Haftungsregeln und eine unternehmensweite Governance definiert.

Im Fokus stehen User:innen

Datenqualität, Governance und gleichzeitig reichlich Agilität? Worauf sollten sich Unternehmen in erster Linie konzentrieren, um KI lösungsorientiert einzusetzen? Alexandra Sumper, Director Delivery Österreich bei Nagarro, betont, dass KI-Projekte weit mehr als reine Technik voraussetzen: “Meine Erfahrung zeigt wirklich, nicht zu groß zu beginnen, wenn man erst am Anfang steht.“ Viele Firmen würden sich gerade anfangs in Strategiepapieren verlieren, anstatt realitätsgetreue Use Case zu definieren, so die Expertin.

“Man muss gut darauf achten, dass man liefert. Sowohl an Datenqualität, als auch an optimierter User Experience”, erläutert Sumper. Als Erfolgsbeispiel nennt sie die Asfinag, die einen KI-Chatbot erfolgreich eingeführt hat. Das Besondere dabei: Ein Kernteam entwickelte die KI-Lösung, achtete auf Datenqualität und band die künftigen Nutzer:innen ein. Die Akzeptanz im Unternehmen stieg rasant, erzählt Sumper von den Projektanfängen.

Ähnliche Schlüsse zieht Sumper aus der Beobachtung anderer Kund:innen: In erster Linie gelte es zu testen, ob KI in einem kleinen Rahmen Nutzen bringt. Sobald Mitarbeiter:innen erleben, dass KI ihre Arbeit wirklich erleichtert, wächst das Vertrauen und die Bereitschaft, weitere Schritte zu gehen.

“Am Anfang gibt es nichts, dass zu 100 Prozent funktioniert”

Dass sich eine Trial-and-Error-Phase gerade in den Anfängen des KI-Einsatzes nicht vermeiden lässt, scheint ein allgemeiner Konsens der Diskussionsrunde zu sein. “Es gibt nichts, was sofort 100 Prozent top funktioniert”, so Sumper. Um Fehlerquellen und deren Auswirkungen jedoch möglichst gering zu halten, empfiehlt die Expertin Qualitätssicherung durch ein Key-User-Team, um Fehler festzustellen, zu korrigieren und Daten-Gaps zu schließen.

Hierbei sollen die Möglichkeiten von generativer KI intelligent genutzt werden, wie Clemens Wasner hervorhebt: “Wir haben das erste Mal eine Technologie, die es ermöglicht, unstrukturierte Daten überhaupt auswertbar zu machen.” Nun gilt es, Effizienz in der Datenstrukturierung und -auswertung zu fördern, um mit der aktuellen Welle der digitalen Transformation mitzuhalten. Denn KI ist, wie Manuel Moser von CANCOM Austria bestätigt, ein wesentlicher Teil der digitalen Transformation: “Ein Baustein, wenn man so will, wie ein ausgestrecktes Werkzeug eines Schweizer Taschenmessers.”

KI-Bereiche mit Potenzial zur Ausgründung

Das Gespräch zeigte insgesamt, dass Unternehmen viel gewinnen können, wenn sie KI nicht als fertige Lösung, sondern als Lernprozess verstehen, in den die Belegschaft aktiv mit eingebunden wird. Auf einer soliden Datenbasis mit klarer Kommunikation ließe sich schon in kleinen Projekten ein spürbarer Mehrwert für das Unternehmen erzeugen.

In manchen Branchen, darunter Sozialversicherungen, E-Commerce sowie Luftfahrt und Logistik, sind Fortschritte unvermeidlich, um den steigenden Anforderungen von Markt- und Mitarbeiterseite gerecht zu werden.

Wasner spricht hierbei von einem Fokus auf Digital Business, der sich bereits in der Entstehung neuer Geschäftsfelder am Markt zeigt: Immer häufiger bündeln Unternehmen Wissensträger:innen zu den Bereichen Data, IoT und Machine Learning in einer eigenen Organisation oder Ausgründung. Gezielt wird hier das Potenzial eines eigenen KI-Kernteams zu nutzen und auszubauen versucht.

Luft nach oben

Dass es in vielen Branchen noch reichlich ungenutztes Potenzial gibt, haben mittlerweile einige Reports aufgeschlüsselt dargestellt. Gerade im Healthcare-Bereich sei “mit Abstand am meisten rauszuholen” – unter anderem im Hinblick auf den sicheren und effizienten Umgang mit Patienten- und Amnesie-Daten zur schnellen und akkuraten Behandlung.

Laut Moritz Mitterer der ITSV besteht eine große Herausforderung darin, sensible Patientendaten und strenge Regulatorik mit dem Wunsch nach Fortschritt zu vereinen. Gerade in Sozialversicherungen sei es wichtig, eine klare Governance zu schaffen und den Einsatzrahmen von KI zu definieren. Nur so könne Vertrauen gefestigt und sichergestellt werden, dass neue Technologien nicht an bürokratischen Hemmnissen oder Sicherheitsbedenken scheitern.

Vertrauen ist “noch ein starker Blocker”

“Am Ende des Tages probieren Unternehmen aus: Wie reagiert die Technologie, wie geht man damit um, welche Art von Projekten macht man?”, rundet Manuel Moser von CANCOM Austria die Diskussion ab. Der nächste Schritt liege darin, immer “mehr in die Kernprozesse von Unternehmen reinzukommen”, so Moser. “Und das, glaube ich, ist ein sehr wesentlicher Punkt.” Das Vertrauen, dass es die Technologie braucht. Das ist aktuell noch ein “starker Blocker in Unternehmen”.

Die Expertenrunde teilt einen universellen Konsens: Der Mensch sowie sein Know-how und Vertrauen in KI spielen bei der digitalen Transformation eine erhebliche Rolle. Sobald KI-Anwendungen auf eine verlässliche Datenstruktur und klare Organisation treffen, kann sich KI im Unternehmensalltag entfalten. Erst durch das Zusammenspiel von Technik, Datenkultur und motivierten Teams wird KI zum Treiber neuer Chancen.


Die gesamte Folge ansehen:

Die Nachlesen der bisherigen Folgen:

Folge 1: “No Hype KI – wo stehen wir nach zwei Jahren ChatGPT?

Folge 2: “Was kann KI in Gesundheit, Bildung und im öffentlichen Sektor leisten?


Die Serie wird von brutkasten in redaktioneller Unabhängigkeit mit finanzieller Unterstützung unserer Partner:innen produziert.

No Hype KI
vor 3 Stunden

“Der größte Feind ist Zettel und Bleistift”: Erfolgsfaktoren und Herausforderungen in der KI-Praxis

Nachlese. Der Hype um künstliche Intelligenz ist längst im Rollen. Doch wie schaffen Unternehmen den Durchbruch in der Praxis? In der dritten Folge der neuen brutkasten-Serie “No Hype KI” schildern Expert:innen, welche Erfolgsfaktoren wirklich zählen und wie sich Herausforderungen souverän meistern lassen - von Datenlücken bis hin zur Einbindung der Belegschaft. Klar wird, dass die Technik nur ein Teil der Gleichung ist.
vor 3 Stunden

“Der größte Feind ist Zettel und Bleistift”: Erfolgsfaktoren und Herausforderungen in der KI-Praxis

Nachlese. Der Hype um künstliche Intelligenz ist längst im Rollen. Doch wie schaffen Unternehmen den Durchbruch in der Praxis? In der dritten Folge der neuen brutkasten-Serie “No Hype KI” schildern Expert:innen, welche Erfolgsfaktoren wirklich zählen und wie sich Herausforderungen souverän meistern lassen - von Datenlücken bis hin zur Einbindung der Belegschaft. Klar wird, dass die Technik nur ein Teil der Gleichung ist.
Die dritte Folge von "No Hype KI" mit Manuel Moser, Alexandra Sumper, Moritz Mitterer und Clemens Wasner (v.l.n.r.) (c) brutkasten

„No Hype KI” wird unterstützt von CANCOM Austria, IBM, ITSV, Microsoft, Nagarro, Red Hat und Universität Graz.


Wie lässt sich KI “richtig” in Unternehmen integrieren? Wieso erleben Unternehmen einen “Bottom-Up-Push” und warum sprechen viele dabei noch von großen Hürden? Um diese und viele weitere Fragen ging es in der dritten Folge von “No Hype KI”. Zu Gast waren Alexandra Sumper von Nagarro, Manuel Moser von CANCOM Austria, Moritz Mitterer von ITSV sowie Clemens Wasner von AI Austria und EnliteAI.

Du willst bei "No Hype KI" am Laufenden bleiben?

Trag dich hier ein und du bekommst jede Folge direkt in die Inbox!

Der Bottom-Up-Push

“Der AI-Hype ist jetzt circa zehn Jahre alt”, startet Clemens Wasner die Diskussionsrunde. Was als “vorausschauende Warnung und Betrugserkennung” im B2B-Sektor begann, hat sich eine knappe Dekade später zu einer Bottom-Up-Push-Bewegung entwickelt. “Einzelne Mitarbeitende verfügen teilweise über weitaus mehr praktische Erfahrung mit Generativer KI”, als “das oft auf einer Projektebene passiert”, so Wasner.

Um KI federführend in Unternehmen zu verankern, sei es wichtiger denn je, Mitarbeitende einzubinden und ihnen intern eine Bühne für den Best-Practice-Austausch zu geben, erklärt Wasner weiter. Aktuell ginge der KI-Push immer intensiver von Mitarbeiter:innen aus. Vergleichbar sei diese Bewegung mit dem Aufkommen der Smartphones vor etwa fünfzehn Jahren.

Daten mit Qualität

Als Basis sollte zuerst allerdings der Datenhaushalt eines Unternehmens sauber strukturiert und reguliert werden, sagt Manuel Moser, Director Digital Innovation & Software Engineering bei CANCOM Austria. “Wenn ein Unternehmen in puncto Daten hinterherhinkt, kann das jetzt durchaus ein Stolperstein sein”, sagt der Experte. In CRM- und ERP-Systemen finden sich häufig unvollständige Angaben. Die dadurch entstehende unzureichende Datenqualität könne jede KI-Initiative ins Stocken bringen, so Moser.

“Der größte Feind ist Zettel und Bleistift”

Schon allein das Notieren von Informationen auf Zetteln gilt nicht nur als scheinbar banale Hürde, wie Moser im Talk erläutert. Analoge Gewohnheiten können enorme Auswirkungen auf den gesamten Digitalisierungsprozess des Unternehmens haben: “Ich sage immer: Bei Digitalisierungslösungen ist der größte Feind der Zettel und der Bleistift am Tisch, mit denen man das digitale Tool am Ende des Tages umgeht.”

Gerade der öffentliche Sektor sollte im KI-Einsatz sowie in der Verwaltung von Daten sorgfältig agieren. Moritz Mitterer, Aufsichtsratsvorsitzender der ITSV, spricht von besonders sensiblen Daten aus der Sozialversicherung, die ein enges rechtliches Korsett und damit ein höheres Maß an Vorsicht mit sich bringen.

“Wir haben 2017 in der ITSV damit begonnen, innerhalb der Struktur damit zu experimentieren”, erzählt Mitterer. Ein essentielles Learning daraus: Gerade große Prozessmengen stellen sich als ideales Feld für KI heraus – wenn man vernünftige Leitplanken, klare Haftungsregeln und eine unternehmensweite Governance definiert.

Im Fokus stehen User:innen

Datenqualität, Governance und gleichzeitig reichlich Agilität? Worauf sollten sich Unternehmen in erster Linie konzentrieren, um KI lösungsorientiert einzusetzen? Alexandra Sumper, Director Delivery Österreich bei Nagarro, betont, dass KI-Projekte weit mehr als reine Technik voraussetzen: “Meine Erfahrung zeigt wirklich, nicht zu groß zu beginnen, wenn man erst am Anfang steht.“ Viele Firmen würden sich gerade anfangs in Strategiepapieren verlieren, anstatt realitätsgetreue Use Case zu definieren, so die Expertin.

“Man muss gut darauf achten, dass man liefert. Sowohl an Datenqualität, als auch an optimierter User Experience”, erläutert Sumper. Als Erfolgsbeispiel nennt sie die Asfinag, die einen KI-Chatbot erfolgreich eingeführt hat. Das Besondere dabei: Ein Kernteam entwickelte die KI-Lösung, achtete auf Datenqualität und band die künftigen Nutzer:innen ein. Die Akzeptanz im Unternehmen stieg rasant, erzählt Sumper von den Projektanfängen.

Ähnliche Schlüsse zieht Sumper aus der Beobachtung anderer Kund:innen: In erster Linie gelte es zu testen, ob KI in einem kleinen Rahmen Nutzen bringt. Sobald Mitarbeiter:innen erleben, dass KI ihre Arbeit wirklich erleichtert, wächst das Vertrauen und die Bereitschaft, weitere Schritte zu gehen.

“Am Anfang gibt es nichts, dass zu 100 Prozent funktioniert”

Dass sich eine Trial-and-Error-Phase gerade in den Anfängen des KI-Einsatzes nicht vermeiden lässt, scheint ein allgemeiner Konsens der Diskussionsrunde zu sein. “Es gibt nichts, was sofort 100 Prozent top funktioniert”, so Sumper. Um Fehlerquellen und deren Auswirkungen jedoch möglichst gering zu halten, empfiehlt die Expertin Qualitätssicherung durch ein Key-User-Team, um Fehler festzustellen, zu korrigieren und Daten-Gaps zu schließen.

Hierbei sollen die Möglichkeiten von generativer KI intelligent genutzt werden, wie Clemens Wasner hervorhebt: “Wir haben das erste Mal eine Technologie, die es ermöglicht, unstrukturierte Daten überhaupt auswertbar zu machen.” Nun gilt es, Effizienz in der Datenstrukturierung und -auswertung zu fördern, um mit der aktuellen Welle der digitalen Transformation mitzuhalten. Denn KI ist, wie Manuel Moser von CANCOM Austria bestätigt, ein wesentlicher Teil der digitalen Transformation: “Ein Baustein, wenn man so will, wie ein ausgestrecktes Werkzeug eines Schweizer Taschenmessers.”

KI-Bereiche mit Potenzial zur Ausgründung

Das Gespräch zeigte insgesamt, dass Unternehmen viel gewinnen können, wenn sie KI nicht als fertige Lösung, sondern als Lernprozess verstehen, in den die Belegschaft aktiv mit eingebunden wird. Auf einer soliden Datenbasis mit klarer Kommunikation ließe sich schon in kleinen Projekten ein spürbarer Mehrwert für das Unternehmen erzeugen.

In manchen Branchen, darunter Sozialversicherungen, E-Commerce sowie Luftfahrt und Logistik, sind Fortschritte unvermeidlich, um den steigenden Anforderungen von Markt- und Mitarbeiterseite gerecht zu werden.

Wasner spricht hierbei von einem Fokus auf Digital Business, der sich bereits in der Entstehung neuer Geschäftsfelder am Markt zeigt: Immer häufiger bündeln Unternehmen Wissensträger:innen zu den Bereichen Data, IoT und Machine Learning in einer eigenen Organisation oder Ausgründung. Gezielt wird hier das Potenzial eines eigenen KI-Kernteams zu nutzen und auszubauen versucht.

Luft nach oben

Dass es in vielen Branchen noch reichlich ungenutztes Potenzial gibt, haben mittlerweile einige Reports aufgeschlüsselt dargestellt. Gerade im Healthcare-Bereich sei “mit Abstand am meisten rauszuholen” – unter anderem im Hinblick auf den sicheren und effizienten Umgang mit Patienten- und Amnesie-Daten zur schnellen und akkuraten Behandlung.

Laut Moritz Mitterer der ITSV besteht eine große Herausforderung darin, sensible Patientendaten und strenge Regulatorik mit dem Wunsch nach Fortschritt zu vereinen. Gerade in Sozialversicherungen sei es wichtig, eine klare Governance zu schaffen und den Einsatzrahmen von KI zu definieren. Nur so könne Vertrauen gefestigt und sichergestellt werden, dass neue Technologien nicht an bürokratischen Hemmnissen oder Sicherheitsbedenken scheitern.

Vertrauen ist “noch ein starker Blocker”

“Am Ende des Tages probieren Unternehmen aus: Wie reagiert die Technologie, wie geht man damit um, welche Art von Projekten macht man?”, rundet Manuel Moser von CANCOM Austria die Diskussion ab. Der nächste Schritt liege darin, immer “mehr in die Kernprozesse von Unternehmen reinzukommen”, so Moser. “Und das, glaube ich, ist ein sehr wesentlicher Punkt.” Das Vertrauen, dass es die Technologie braucht. Das ist aktuell noch ein “starker Blocker in Unternehmen”.

Die Expertenrunde teilt einen universellen Konsens: Der Mensch sowie sein Know-how und Vertrauen in KI spielen bei der digitalen Transformation eine erhebliche Rolle. Sobald KI-Anwendungen auf eine verlässliche Datenstruktur und klare Organisation treffen, kann sich KI im Unternehmensalltag entfalten. Erst durch das Zusammenspiel von Technik, Datenkultur und motivierten Teams wird KI zum Treiber neuer Chancen.


Die gesamte Folge ansehen:

Die Nachlesen der bisherigen Folgen:

Folge 1: “No Hype KI – wo stehen wir nach zwei Jahren ChatGPT?

Folge 2: “Was kann KI in Gesundheit, Bildung und im öffentlichen Sektor leisten?


Die Serie wird von brutkasten in redaktioneller Unabhängigkeit mit finanzieller Unterstützung unserer Partner:innen produziert.

No Hype KI
Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag