10.01.2020

#unchAIn, Teil 3: Was ist Machine Learning und Deep Learning?

Für die Artikelreihe "#unchAIn - Demystifying AI" kooperiert der brutkasten mit dem Expertinnen-Netzwerk Ms. AI, um Vorurteile rund um Künstliche Intelligenz zu entmystifizieren. Expertinnen beantworten dazu die großen Fragen rund um das Thema KI. Teil 3: Was ist Machine Learning und Deep Learning?
/artikel/ki-was-ist-machine-learning-deep-learning
Künstliche Intelligenz (KI): Was ist Machine Learning? Was ist der Unterschied zu Deep Learning?
(c) Adobe Stock - zapp2photo

KI (Künstliche Intelligenz) ist das vielleicht wichtigste Tech-Thema unserer Zeit. Es gibt wohl keinen Bereich des politischen, wirtschaftlichen und gesellschaftlichen Lebens, der nicht das Potenzial hat, von KI grundlegend verändert zu werden. Gleichzeitig gibt es bei diesem Thema viele Falschinformation und überzogene Erwartungen. Für das Projekt „#unchAIn – Demystifying AI“ kooperiert der brutkasten mit dem internationalen Expertinnen-Netzwerk Miss AI, um gängige, teils falsche Vorstellungen zu entmystifizieren. Expertinnen und Experten der jeweiligen Felder – von Philosophinnen über Wissenschaftlerinnen bis zu Managerinnen – beantworten dabei in einer mehrteiligen Artikelreihe die großen Fragen zum Thema Künstliche Intelligenz, Machine Learning, Deep Learning und Co.

+++Mehr zum Thema AI & DeepTech+++

Im ersten Teil der Serie behandelten wir die Frage, was eigentlich Intelligenz (ganz allgemein) ist. Im zweiten ging es darum, ob Maschinen das menschliche Gehirn 1:1 kopieren können. Im dritten Teil widmen wir uns nun zwei der gängigsten Tech-Begriffe im Zusammenhang mit KI: Was ist Machine Learning? Und was ist Deep Learning? Und wie unterscheiden sich die beiden? Die Programmiererin und Mathematikerin Donata Petrelli un der Chatbot-Pionier Denis Rothman wählten bei der Beantwortung dieser Fragen sehr unterschiedliche Zugänge.


Bisher in der Serie „#unchAIn – Demystifying AI“ erschienen:


Was ist Machine Learning?

Petrelli: Die meisten haben als Kind wohl das Spiel „Blinde Kuh“ gespielt? Man ist mit verbundenen Augen in einem ausreichend großen Raum und muss es schaffen, die anderen im Raum zu finden und zu erkennen. Dabei hat das Kind mit verbundenen Augen keine Hinweise darauf, wo die anderen Kinder sind. Wenn es sich durch den Raum bewegt, muss es durch Tasten und Probieren die Umgebung verstehen, und letztlich die Mitspieler finden und erkennen. Machine Learning ist genau so ein Prozess, wie ihn das Kind mit verbundenen Augen im Raum durchführt.

Und um es etwas technischer zu definieren: Das maschinelle Lernen macht heute einen großen Teil des Bereichs Künstliche Intelligenz aus. Es umfasst mehrere Methoden zur Analyse und Erkennung von Daten und deren Beziehungen zueinander – oft zu Vorhersagezwecken. Alle diese Verfahren haben das Ziel, ohne initiale Kenntnisse sondern durch Erfahrung, eine Umgebung mit ihren Elementen und den Beziehungen zwischen ihnen, zu erkennen. Zu den bekanntesten Verfahren gehört das Modell der künstlichen neuronalen Netze, die die Struktur des menschlichen Gehrins simulieren.

Rothman: Machine Learning ist ein Teilbereich der Künstlichen Intelligenz. Nicht Machine Learning-basierte Algorithmen sind im Allgemeinen regelbasiert. Also etwa:

wenn X dann Y

Sowohl X als auch Y enthalten dabei viele Werte wie etwa ein Set von Daten. Das maschinelle Lernen kann die richtigen Werte „lernen“, um ein Ergebnis zu produzieren. Dabei gibt es keine Regel! Wir wollen etwa die Lösung finden für die Gleichung:

Y=aX + b

Wir müssen also die Werte von a und b finden, um die Gleichung lösen zu können. Daher probieren wir alle möglichen Werte von a und b aus. Das passiert oftmals nach dem Zufallsprinzip, um zu sehen, welche Werte am besten passen. Da wir leistungsstarke Computer haben, funktioniert das auch. Wir benutzen dazu viele Arten von Algorithmen, etwa Clustering und Regression. Jeder Algorithmus f sucht dabei nach den richtigen Werten, nach dem Prinzip:

f(Y)=aX+b

Die jeweiligen Algorithmen können dann jeweils für bestimmte Aufgaben genutzt werden, etwa eine Vorhersage, ob es nächste Woche regnen wird oder was die beste Route ist, um von Ort A nach Ort B zu gelangen usw.

Und was ist der Unterschied zu Deep Learning?

Rothman: Deep Learning ist wiederum ein Teilbereich des maschinellen Lernens. Es erweitert das Prinzip um „Layers“. Man kann es in Fällen nutzen, wo die Ermittlung des Werts Y schon deutlich komplexer ist. Nehmen wir dazu wieder eine Funktion f heran, wo es nun aber viele Schritte gibt:

f(Y)= f5(f4(Xf(3Xf(2Xf(X))

Das wirkt etwas verrückt? Als Mensch macht man das aber jeden Tag. Wenn man etwa gebeten wird, ein Gesicht in einem Bild mit 30 Gesichtern zu finden (wie z.B. auf einem Klassenfoto), dann macht man (unbewusst) ungefähr folgendes:

  1. Man versucht, die Gesichter vom Hintergrund zu isolieren.
  2. Dann sieht man sich die Form der Gesichter an.
  3. Dann die Farbe der Gesichter.
  4. Dann auch die Größe einer Person.
  5. Dann trifft man endlich eine Entscheidung und sagt: „Das ist die Person, die ich suche!“

Deep Learning tut dies automatisch, indem es die jeweils richtigen Werte von a und b findet, um jede Schicht von f(Y)=aX + b zu ermitteln.

Petrelli: Deep Learning ist eine Verstärkung der Methoden des Machine Learning, insbesondere der neuronalen Netze. In diesem Fall ist das Modell ausgefeilter, da die Resultate das Ergebnis der Ausarbeitung strukturierter Konzepte sind, die sich aus den Basis-Konzepten ableiten.

Um eine Analogie zu bringen: Die Gewinnung von Informationen durch ein Deep Learning-Modell im Vergleich zu einem Machine Learning-Modell ist wie jene eines Erwachsenen verglichen mit jener eines Kindes, das noch weitere Entwicklungsstufen vor sich hat.

⇒ Zur Page von Ms. AI

Redaktionstipps
Deine ungelesenen Artikel:
08.04.2025

easygoinc: Welser Van- und Ex-2m2m-Startup insolvent

Mit einem Bausatzmodul wollte das Welser Startup easygoinc Fahrzeuge zu Campern ummodulieren. Die Idee schaffte es 2019 zu "2 Minuten 2 Millionen", 2023 war man insolvent und wurde saniert. Allerdings ohne Erfolg, wie sich heute zeigt.
/artikel/easygoinc-welser-van-und-ex-2m2m-startup-insolvent
08.04.2025

easygoinc: Welser Van- und Ex-2m2m-Startup insolvent

Mit einem Bausatzmodul wollte das Welser Startup easygoinc Fahrzeuge zu Campern ummodulieren. Die Idee schaffte es 2019 zu "2 Minuten 2 Millionen", 2023 war man insolvent und wurde saniert. Allerdings ohne Erfolg, wie sich heute zeigt.
/artikel/easygoinc-welser-van-und-ex-2m2m-startup-insolvent
Trive Studio Acheron Emotional Data Extension Handcheque JobRocker Frydo VivaBack wiederverkaufen.at Skilltree Swilox breddy's Firmeninsolvenzen Firmen-Insolvenzen Unternehmensinsolvenzen KSV1870 Statistik
(c) Adobe Stock - Axel Bueckert

Unter dem Namen „Easygoinc VanLine“ trat das Welser Startup rund um David Lugmayr und Martin Erbler schon im Jahr 2019 bei der Startup-Show „2 Minuten 2 Millionen“ an. Seither musste das Startup einige Stolpersteine überspringen. Nun meldete man Konkurs an – und ist damit nicht zum ersten Mal zahlungsunfähig.

easygoinc entwickelte Bausatzmodule für Camper

Im Jahr 2016 wurde das Startup mit Sitz in Wels gegründet und fokussierte sich auf den „Um- und Innenausbau von Campingfahrzeugen“. Wie schon in der Startup-Show „2 Minuten 2 Millionen“ präsentiert, spezialisierte sich das Startup auf „smarte Raumkonzepte für Alltagsfahrzeuge“ seiner Kunden.

In Van- oder Campingfahrzeugen wollte man nicht nur ein Bett, sondern auch eine mobile Küche und einen flexiblen Stauraum in Bausatzmodulen integrieren. Der Bausatz konnte von Kund:innen im Webshop des Startup bestellt werden.

1,64 Millionen Euro Überschuldung

Nun wurde ein Konkursverfahren per Eigenantrag beim zuständigen Landesgericht Wels eröffnet, wie der Alpenländische Kreditorenverband AKV berichtet.

Die Verbindlichkeiten des Startups belaufen sich auf eine Summe von über 1,93 Millionen Euro. Den angeführten Passiva stehen Aktiva im Umfang von 290.900 Euro gegenüber. Die rechnerische Überschuldung liegt somit in Höhe von etwa 1,64 Millionen Euro, heißt es vom AKV.

Zuletzt waren 21 Dienstnehmer:innen bei easygoinc beschäftigt. Außerdem seien rund 100 Gläubiger:innen von der Insolvenz betroffen.

Insolvenz bereits 2023 – Sanierung nicht geglückt

Damit handelt es sich nicht um die erste Insolvenz: Schon 2023 war easygoinc zahlungsunfähig. Damals wurde ein Sanierungsplan mit einer Quote von 20 Prozent abgeschlossen. Wegen der schwierigen Wirtschaftslage konnte das Startup allerdings nur zwei der vier Teilquoten bezahlen.

08.04.2025

easygoinc: Welser Van- und Ex-2m2m-Startup insolvent

Mit einem Bausatzmodul wollte das Welser Startup easygoinc Fahrzeuge zu Campern ummodulieren. Die Idee schaffte es 2019 zu "2 Minuten 2 Millionen", 2023 war man insolvent und wurde saniert. Allerdings ohne Erfolg, wie sich heute zeigt.
08.04.2025

easygoinc: Welser Van- und Ex-2m2m-Startup insolvent

Mit einem Bausatzmodul wollte das Welser Startup easygoinc Fahrzeuge zu Campern ummodulieren. Die Idee schaffte es 2019 zu "2 Minuten 2 Millionen", 2023 war man insolvent und wurde saniert. Allerdings ohne Erfolg, wie sich heute zeigt.
Trive Studio Acheron Emotional Data Extension Handcheque JobRocker Frydo VivaBack wiederverkaufen.at Skilltree Swilox breddy's Firmeninsolvenzen Firmen-Insolvenzen Unternehmensinsolvenzen KSV1870 Statistik
(c) Adobe Stock - Axel Bueckert

Unter dem Namen „Easygoinc VanLine“ trat das Welser Startup rund um David Lugmayr und Martin Erbler schon im Jahr 2019 bei der Startup-Show „2 Minuten 2 Millionen“ an. Seither musste das Startup einige Stolpersteine überspringen. Nun meldete man Konkurs an – und ist damit nicht zum ersten Mal zahlungsunfähig.

easygoinc entwickelte Bausatzmodule für Camper

Im Jahr 2016 wurde das Startup mit Sitz in Wels gegründet und fokussierte sich auf den „Um- und Innenausbau von Campingfahrzeugen“. Wie schon in der Startup-Show „2 Minuten 2 Millionen“ präsentiert, spezialisierte sich das Startup auf „smarte Raumkonzepte für Alltagsfahrzeuge“ seiner Kunden.

In Van- oder Campingfahrzeugen wollte man nicht nur ein Bett, sondern auch eine mobile Küche und einen flexiblen Stauraum in Bausatzmodulen integrieren. Der Bausatz konnte von Kund:innen im Webshop des Startup bestellt werden.

1,64 Millionen Euro Überschuldung

Nun wurde ein Konkursverfahren per Eigenantrag beim zuständigen Landesgericht Wels eröffnet, wie der Alpenländische Kreditorenverband AKV berichtet.

Die Verbindlichkeiten des Startups belaufen sich auf eine Summe von über 1,93 Millionen Euro. Den angeführten Passiva stehen Aktiva im Umfang von 290.900 Euro gegenüber. Die rechnerische Überschuldung liegt somit in Höhe von etwa 1,64 Millionen Euro, heißt es vom AKV.

Zuletzt waren 21 Dienstnehmer:innen bei easygoinc beschäftigt. Außerdem seien rund 100 Gläubiger:innen von der Insolvenz betroffen.

Insolvenz bereits 2023 – Sanierung nicht geglückt

Damit handelt es sich nicht um die erste Insolvenz: Schon 2023 war easygoinc zahlungsunfähig. Damals wurde ein Sanierungsplan mit einer Quote von 20 Prozent abgeschlossen. Wegen der schwierigen Wirtschaftslage konnte das Startup allerdings nur zwei der vier Teilquoten bezahlen.

Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag