22.09.2023

Ihre Modelle visualisieren zukünftige Armut auf Landkarten

Lisette Espín-Noboa entwickelt in Wien mit Big Data Machine-Learning-Modelle und zeigt uns mit Poverty Maps, wo die Ärmsten in Zukunft leben.
/artikel/ihre-modelle-visualisieren-zukuenftige-armut-auf-landkarten
Lisette Espín-Noboa liefert Politiker:innen neue Entscheidungsgrundlagen. Foto: Map Box/OpenStreetMap/Bimal Viswanath
Lisette Espín-Noboa liefert Politiker:innen neue Entscheidungsgrundlagen. Foto: Map Box/OpenStreetMap/Bimal Viswanath

Heuer präsentierte ein wissenschaftliches Team von der Central European University (CEU) und dem Complexity Science Hub (CSH) einen Durchbruch: Sie können Armut auf Landkarten sichtbar machen.

Konkret nahmen sich die Forscher:innen dafür Sierra Leone und Uganda vor. Die beiden Staaten in Subsahara-Afrika zählen zu den ärmsten der Welt. Das Wiener Forscherteam entwickelte dazu das interaktive Online-Tool Poverty Maps, mit dem User:innen die Wohlstandsentwicklung in beiden Ländern vergleichen können. Sogar einen Ausblick auf die Zukunft können die Karten geben. Unmengen abstrakter Daten werden damit auf einen Blick zu aussagekräftiger Information.

Vom Taxiverhalten zu Armutskarten

“Die Idee wäre, dass politische Entscheidungsträger:innen, die Menschen unterhalb der Armutsgrenze helfen möchten, diese Art von Instrumenten nutzen können. Um zu verstehen, wo die Menschen sind, die wirklich Hilfe brauchen”, erklärt Lisette Espín-Noboa im brutkasten-Interview.

Die aus Ecuador stammende Computerwissenschaftlerin ist extra für das Projekt nach Wien gekommen. Sie ist Expertin für Predictive Analytics, Netzwerkanalysen und Machine Learning. Davor arbeitete sie vor allem mit Mobilitätsdaten, auf deren Basis sie Prognosen für die Zukunft erstellte. Espín-Noboa erforschte unter anderem, wie sich Taxis in der Metropole New York verhalten.

Wiederverwendbare ML-Modelle

“Sie gaben mir dieses Projekt und ich hatte die Freiheit, zu schauen, wie es funktioniert”, sagt die Computerwissenschaftlerin. Sie entwickelte ein eigenes Framework für drei Machine-Learning-Modelle. Damit visualisieren die Forscher:innen die Wohlstandsentwicklung auf Landkarten. Am Beispiel von Sierra Leone und Uganda bewies das Team bereits, dass es möglich ist.

Espín-Noboa erklärt, dass sie die Modelle nun auch für andere Länder verwenden. Dafür müsse nur die sogenannte Ground Truth für jedes Land anhand einer eigenen Datenbasis neu in das Modell gefüttert werden. Ground Truth ist die genaue und verlässliche Referenz, anhand derer die Richtigkeit von Daten oder Vorhersagen bewertet wird.

Wie viele Antennen, welche Toilette?

Für die beiden afrikanischen Länder verwendeten die Forscher:innen Umfragedaten als Basis. “In Afrika werden Umfragen zum Haushalt oder Lebensstandard durchgeführt. Diese Fragebögen ermitteln, wie viele Zimmer Ihr Haus hat, welche Art von Toilette Sie benutzen, wie Sie an Ihr Wasser kommen, ob Sie ein Auto habe oder ob Sie eine Haus- und Sanitäranlage haben”, erklärt die Computerwissenschaftlerin. Mit dem Internationalen Wohlstandsindex (IWI) wurden auf dieser Basis dann Grundwerte errechnet.

Hinzugefügt wurden in der Folge weitere Daten, die etwa von Satellitenbildern oder Social-Media-Postings stammen. Daraus konnten Espín-Noboa und ihre Kolleg:innen schließen, wie viele Menschen in einer Region ein iPhone besitzen oder wie viele Antennen sich in einem Gebiet befinden. “Wir dachten: Wenn der Ort viele Antennen hat, bedeutet das wahrscheinlich, dass er wohlhabend ist. Wenn er keine Antennen hat, ist er wahrscheinlich arm”, so Espín-Noboa. Daten aus OpenStreetMap würden wiederum verraten, wie weit die nächste Straße oder Schule entfernt ist.

Zukunftsvorhersagen auch für Europa

Nun versuchen Espín-Noboa und ihr Team diese Karten auch für Österreich und Ungarn zu erstellen. Noch fehlen ihr aber die dafür notwendigen Daten für ihre Modelle. Sie ist deshalb auf der Suche nach Organisationen, die Daten zur Verfügung stellen.

“Wir können nicht einfach die gleichen Daten verwenden, weil die Standards unterschiedlich sind. Etwa fragt man in Ungarn nicht, welche Art von Toiletten jemand benutzt”, erklärt Espín-Noboa. Stattdessen sei in etwa Ungarn aussagekräftiger, wie viel Immobilien kosten. Für jedes Land müsse deshalb eine eigene “Ground Truth” ermittelt werden, dann könnten die entwickelten Modelle für verschiedene Länder verwendet werden, glaubt die Expertin.

Bessere Entscheidungsgrundlage

Das Projekt ist ein Novum, denn bisher verließen sich Entscheidungsträger:innen vor allem auf Volkszählungsdaten, wenn es um den Umgang mit Armut ging. Die Karten stellen die Entwicklung jedoch viel detaillierter dar. “Mit der Ground Truth haben wir Armut vorhergesagt, aber Sie können alles vorhersagen. Wenn Sie fundierte Fakten zum Thema Bildung haben, können Sie etwa auch Bildung vorhersagen”, sagt Espín-Noboa. Sie hofft, dass künftig mehr Tools für politische Entscheidungsträger:innen zur Verfügung stehen – damit diese bessere und zielgerichtete Entscheidungen treffen können.

Deine ungelesenen Artikel:
03.02.2025

KI in Europa: “Müssen aggressiv reingehen, um unseren Wohlstand zu halten”

Was braucht es, damit Österreich und Europa bei künstlicher Intelligenz nicht zurückfallen? Diese Frage diskutierten Hermann Erlach (Microsoft), Marco Porak (IBM), Peter Ahnert (Nagarro) und Jeannette Gorzala in der vorerst letzten Folge der brutkasten-Serie "No Hype KI".
/artikel/no-hype-ki-folge-6
03.02.2025

KI in Europa: “Müssen aggressiv reingehen, um unseren Wohlstand zu halten”

Was braucht es, damit Österreich und Europa bei künstlicher Intelligenz nicht zurückfallen? Diese Frage diskutierten Hermann Erlach (Microsoft), Marco Porak (IBM), Peter Ahnert (Nagarro) und Jeannette Gorzala in der vorerst letzten Folge der brutkasten-Serie "No Hype KI".
/artikel/no-hype-ki-folge-6
Peter Ahnert, Hermann Erlach, Marco Porak und Jeannette Gorzala
Peter Ahnert, Hermann Erlach, Marco Porak und Jeannette Gorzala | Foto: brutkasten

“No Hype KI” wird unterstützt von CANCOM AustriaIBMITSVMicrosoftNagarroRed Hat und Universität Graz.


Wo stehen wir wirklich, was die Adaption von künstlicher Intelligenz in der österreichischen Wirtschaft angeht? Diese Frage zu beantworten war eines der Ziele der Serie “No Hype KI“, die brutkasten anlässlich des zweijährigen Bestehens von ChatGPT gestartet hat. Die ersten fünf Folgen beleuchten unterschiedliche Aspekte des Themas und lieferten eine Bestandsaufnahme.

Im Staffelfinale, der sechsten Folge, war der Blick dann in Richtung Zukunft gerichtet. Dazu fanden sich die Österreich-Chefs von Microsoft und IBM, Hermann Erlach und Marco Porak, sowie Nagarros Big Data & AI Practice Lead für Central Europe, Peter Ahnert, und KI-Expertin Jeannette Gorzala, die auch Mitglied des KI-Beirats der österreichischen Bundesregierung ist, im brutkasten-Studio ein.

“Der Hype ist weg und das ist eine gute Sache”

Eine der Erkenntnisse der Serie: Unternehmen und Institutionen verabschieden sich von überschwänglichen Erwartungen und sehen sich stattdessen an, wie KI tatsächlich in der Praxis eingesetzt wird. „Der Hype ist weg und das ist eine gute Sache, weil jetzt kann man auf den Use Case gehen“, sagt Hermann Erlach, General Manager von Microsoft Österreich, im Videotalk. Er vergleicht den aktuellen Reifegrad von KI mit dem Beginn einer langen Reise: „Wenn ich so eine Reise angehe, dann brauche ich ein Ziel, einen Plan und Mitreisende. Alleine macht das wenig Spaß.“

Auch Marco Porak, General Manager von IBM in Österreich, schlägt in eine ähnliche Kerbe. Er sieht das abgelaufene Jahr als eine Phase der Erkenntnis. Den Status Quo bei KI in Österreichs Unternehmen beschreibt er im Talk folgendermaßen: “Wir haben allerorts sehr viel ausprobiert, sind vielleicht da und dort auf die Nase gefallen”. Gleichzeitig habe es auch “schöne Erfolge” gegeben. Für Porak ist klar: “Die Frage der Stunde lautet: Wie machen wir jetzt von hier weiter?“

AI Act: “Jetzt müssen wir ins Tun kommen”

Ein großes Thema dabei ist der AI Act der EU. Jeannette Gorzala, Gründerin von Act.AI.Now, plädiert für eine pragmatische Haltung gegenüber der EU-Verordnung: “Der AI-Act ist ein Faktum, er ist da. Jetzt müssen wir ins Tun kommen.” Sie sieht in dem Regelwerk einen Wegweiser: “Wir müssen die entsprechenden Kompetenzen aufbauen und die Möglichkeiten nutzen, die diese Regulierung bietet. Das ist der Reiseplan, den wir brauchen.”

Auch Marco Porak sieht den AI Act positiv: „Er hat nicht die Algorithmen reguliert, sondern gesagt, was wir in Europa gar nicht wollen, etwa Sozialpunktesysteme oder Gesichtserkennung in Echtzeit.“ So entstehe für Unternehmen im globalen Wettbewerb ein Vorteil, wenn sie ihre KI-Anwendung nach europäischen Maßstäben zertifizieren lassen: „Das ist wie ein Gütesiegel.“

“Müssen positiv aggressiv reingehen, um unseren Wohlstand zu halten”

Hermann Erlach von Microsoft bezeichnet den Ansatz des AI Act ebenfalls als “gut”, betont aber gleichzeitig, dass es jetzt auf die Umsetzung von KI-Projekten ankomme: “Wir haben eine Situation, in der jedes Land an einem neuen Startpunkt steht und wir positiv aggressiv reingehen müssen, um unseren Wohlstand zu halten.”

Peter Ahnert sieht dabei auch ein Problem in der öffentlichen Wahrnehmung: KI werde tendenziell nicht nur zu klein gedacht, sondern meist auch in Zusammenhang mit Risiken wahrgenommen: “Es werden die Chancen nicht gesehen.” Woran liegt es? “Zu einem erheblichen Teil daran, dass noch zu wenig Bildung und Aufklärung an dem Thema da ist. In Schulen, in Universitäten, aber auch in Unternehmen und in der öffentlichen Hand.” Hier müsse man ansetzen, sagt der Nagarro-Experte.

Jeannette Gorzala sieht das ähnlich: “Bildung und Kompetenz ist das große Thema unserer Zeit und der zentrale Schlüssel.” Verstehe man etwas nicht, verursache dies Ängste. Bezogen auf KI heißt das: Fehlt das Verständnis für das Thema, setzt man KI nicht ein. Die Opportunitätskosten, KI nicht zu nutzen, seien aber “viel größer” als das Investment, das man in Bildung und Governance tätigen müssen. “Natürlich ist es ein Effort, aber es ist wie ein Raketenstart”, sagt Gorzala.

IBM-Programm: “Die Angst war weg”

Wie das in der Praxis funktionieren kann, schilderte IBM-Chef Porak mit einem Beispiel aus dem eigenen Unternehmen. IBM lud weltweit alle Mitarbeitenden zu einer KI-Challenge, bei der Mitarbeiter:innen eigene KI-Use-Cases entwickelten, ein – mit spürbaren Folgen: “Die Angst war weg.” Seine Beobachtung: Auch in HR-Teams stieg die Zufriedenheit, wenn sie KI als Assistenz im Arbeitsablauf nutzen. “Sie können sich auf die komplexen Fälle konzentrieren. KI übernimmt die Routine.”

Microsoft-Chef Erlach warnt auch davor, das Thema zu stark unter Bezug auf rein technische Skills zu betrachten: “Die sind notwendig und wichtig, aber es geht auch ganz viel um Unternehmens- und Innovationskultur. Wie stehen Führungskräfte dem Thema AI gegenüber? Wie steht der Betriebsrat dem Thema AI gegenüber?”, führt er aus.

Venture Capital: “Müssen in Europa ganz massiv was tun”

Soweit also die Unternehmensebene. Einen große Problemstelle gibt es aber noch auf einem anderen Level: Der Finanzierung von Innovationen mit Risikokapital. “An der Stelle müssen wir in Europa ganz massiv was tun”, merkte Ahnert an. Er verwies auf Beispiele wie DeepMind, Mistral oder Hugging Face, hinter denen jeweils europäische Gründer stehen, die aber in den USA gegründet, ihre Unternehmen in die USA verkauft oder zumindest vorwiegend aus den USA finanziert werden.

Der Nagarro-Experte verwies dazu auf eine Studie des Applied AI Institute, für die Startups aus dem Bereich generative KI zu den größten Hürden, mit denen sie es zu tun haben, befragt wurden. “51 Prozent haben Funding genannt. Weit abgeschlagen an zweiter Stelle mit 24 Prozent erst kam die Regulierung und unter 20 Prozent waren Themen wie Fachkräftemangel oder Zugang zu Compute Power.” Ahnerts Appell: “Bei dem Thema Finanzierung müssen wir was tun, damit wir in der nächsten Welle an der Spitze sind.”

Erlach: Adaption entscheidend

Letztlich sei aber vielleicht gar nicht so entscheidend, wo eine Technologie produziert werde, argumentierte Hermann Erlach von Microsoft. Denn es komme auf die Adaption an: “Vielleicht ist die Diskussion Europa vs. Amerika in Teilbereichen die falsche.” Die wichtigere Frage sei also: “Wie adaptiere ich diese Technologie möglichst schnell, um meinen Wohlstand zu erhöhen?”

Marco Porak ergänzt: “Ganz, ganz wesentlich ist Mut. Ganz, ganz wesentlich ist unsere kulturelle Einstellung zu dem Thema.” Man müsse die Chancen sehen und weniger das Risiko. In der Regulatorik könne man dies begleiten, indem man Anreize schafft. “Und ich glaube, wenn wir das als Österreich mit einem großen Selbstbewusstsein und auch als Europa mit einem großen Selbstbewusstsein machen, dann haben wir in fünf Jahren eine Diskussion, die uns durchaus stolz machen wird.”


Die gesamte Folge ansehen:


Die Nachlesen der bisherigen Folgen:

Folge 1: “No Hype KI – wo stehen wir nach zwei Jahren ChatGPT?”

Folge 2: “Was kann KI in Gesundheit, Bildung und im öffentlichen Sektor leisten?”

Folge 3: “Der größte Feind ist Zettel und Bleistift”: Erfolgsfaktoren und Herausforderungen in der KI-Praxis”

Folge 4: KI-Geschäftsmodelle: “Wir nutzen nur einen Bruchteil dessen, was möglich ist”

Folge 5: Open Source und KI: “Es geht nicht darum, zu den Guten zu gehören”


Die Serie wird von brutkasten in redaktioneller Unabhängigkeit mit finanzieller Unterstützung unserer Partner:innen produziert.

No Hype KI

Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag

AI Summaries

Ihre Modelle visualisieren zukünftige Armut auf Landkarten

AI Kontextualisierung

Welche gesellschaftspolitischen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Ihre Modelle visualisieren zukünftige Armut auf Landkarten

AI Kontextualisierung

Welche wirtschaftlichen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Ihre Modelle visualisieren zukünftige Armut auf Landkarten

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Innovationsmanager:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Ihre Modelle visualisieren zukünftige Armut auf Landkarten

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Investor:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Ihre Modelle visualisieren zukünftige Armut auf Landkarten

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Politiker:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Ihre Modelle visualisieren zukünftige Armut auf Landkarten

AI Kontextualisierung

Was könnte das Bigger Picture von den Inhalten dieses Artikels sein?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Ihre Modelle visualisieren zukünftige Armut auf Landkarten

AI Kontextualisierung

Wer sind die relevantesten Personen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Ihre Modelle visualisieren zukünftige Armut auf Landkarten

AI Kontextualisierung

Wer sind die relevantesten Organisationen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Ihre Modelle visualisieren zukünftige Armut auf Landkarten