03.08.2023

Bard: Was hinter Googles Chatbot steckt – und wie er sich von ChatGPT unterscheidet

Am 13. Juli 2023 wurde Bard, Googles auf künstlicher Intelligenz (KI) basierender Chatbot in Europa gelauncht. Die KI wurde den Medien beim Salzburg Summit 2023 bei einem Gespräch mit Yariv Adan, Senior Director of Product Management bei Google, vorgestellt.
/artikel/google-bard
Google logo on one of the buildings situated in Googleplex, the company's main campus in Silicon Valley
Foto: Adobe Stock

Das große Sprachmodell von Google AI, das mithilfe eines riesigen Datensatzes aus Text und Code trainiert wurde, heißt „Bard”. Der Experte Yariv Adan ist für Google in Zürich tätig und bringt mehr als zehn Jahre Erfahrung mit künstlicher Intelligenz mit. Er war maßgeblich an der Entwicklung der Software beteiligt und ist überzeugt davon, dass die Menschen KI im Laufe der Zeit benötigen werden, um sich in der Welt zurechtzufinden. Als Beispiel dafür nennt er “FloodHub”, Googles Hochwasservorhersagen basierend auf maschinellem Lernen, um Menschen im Voraus vor Hochwasser warnen zu können. 

Laut Adan war Machine Learning in früheren Zeiten, bevor es LLMs – Large Language Models wie Bard gab – zuerst auf „Supervised Training” mit menschlich generierten Beispielen angewiesen. Nur so konnte die KI beginnen, von selbst zu lernen. Das bedeutet, frühere KI-Anwendungen lernten nach vom Umfang deutlich limitierten Beispielen anstatt nach vorgegebenen Regeln, was wiederum sehr teuer war. „Der erste Durchbruch gelang 2018 mit Google BERT (Bidirectional Encoder Representations from Transformers), als es möglich wurde, die KI durch unüberwachtes Training mit Milliarden von Daten zu trainieren – infolgedessen konnten die Kosten in Grenzen gehalten werden. Diese Form des maschinellen Lernens ist extrem effektiv und ermöglichte die Erstellung großer Sprachmodelle wie Bard”, so der Google Spezialist. 

Bard ist anders als ChatGPT

Die Technologie verspricht, in der Lage zu sein, Texte zu generieren, Sprachen zu übersetzen, kreative Inhalte zu schreiben und Fragen auf informative Weise zu beantworten. Im Unterschied zu ChatGPT stellt Bard oftmals mehrere Antwortmöglichkeiten parat und gibt seinen User:innen auch die Möglichkeit, dieselbe Eingabe via Google Search suchen zu lassen.

Wichtig ist, wie Adan betont, dass User:innen ein Bewusstsein dafür zu entwickeln, wann KI und wann besser Google Search für die Suche nach Informationen verwendet werden sollte. Wird beispielsweise nach einem aktuellen Börsenkurs gefragt, kann durchaus eine plausible, jedoch inhaltlich falsche Antwort generiert werden. Denn Bard rät auf der Grundlage der gefütterten Informationen und des Kontexts weiter und formt so eine finale Antwort. Googles KI wurde also absichtlich und bewusst von der Google Suche getrennt. 

Große Sprachmodelle wie Bard unterscheiden sich in drei Punkten

Die Größe ist insofern ausschlaggebend, da große Sprachmodelle mit riesigen Datenmengen trainiert werden und sie dadurch komplexere Muster und Beziehungen in der Sprache lernen. Ihre Komplexität erlaubt ihnen, Texte zu generieren, diese zu verstehen und zu beantworten. Durch die Flexibilität können Modelle wie Bard für die unterschiedlichsten Aufgaben wie zum Beispiel für das Erstellen von kreativen Inhalten und die Beantwortung von Fragen eingesetzt werden. 

Während Bard mit Echtzeitinformationen gefüttert wird, trainiert es. Das heißt, es lernt während der Verwendung, was als Online-Training bezeichnet wird. Dadurch kann Bard lernfähig bleiben und seine Genauigkeit beibehalten, auch wenn sich öffentlich verfügbare Daten ändern. 

Das wird unter Prompt-Design verstanden

Yariv Adan erzählt, Prompt-Design ist die Art und Weise, wie das Modell durch die Eingabe von Input aufgefordert wird, etwas zu tun. Nach der Fütterung mit Daten rät es auf der Grundlage des Kontextes weiter, da die KI sehr gut im Erkennen komplexer Muster ist.

„Die Schnittstelle bedient sich unserer Sprache und das macht die Technologie so einzigartig. So wird es jedem Menschen möglich, die KI zu benutzen – selbst für jene, die noch nie etwas mit Programmieren zu tun hatten. Für Entwickler:innen gibt es APIs, die Bard als Sprachmodell in ihre eigenen Anwendungen integrieren lassen”, so Adan.

Risiken der generativen künstlichen Intelligenz 

Wie jede Technologie birgt auch AI Risiken, die vorausgedacht werden müssen. Um diese einzudämmen, wurden von Google sieben „Responsible AI-Prinzipien” entwickelt, verrät der Google-Experte. Diese legen unter anderem fest: KI-Anwendungen sollen der Gesellschaft von Nutzen sein, Vorurteile dürfen nicht erzeugt oder verstärkt werden und Datenschutz soll im Fokus stehen.

Die AI-Prinzipien verfolgen weiters die Ziele, auf Sicherheit ausgelegt und getestet zu sein und sich Menschen gegenüber rechenschaftspflichtig zu verhalten. Außerdem hat Google Filter auf verschiedenen Ebenen integriert, um die Qualität der Antworten zu verbessern und sicherzustellen, dass keine unangemessenen Inhalte generiert werden. 

Um etwaigen Risiken entgegenzuwirken, führen Google AI-Ingenieur:innen und -Forscher:innen regelmäßige Audits durch. Auch das Feedback der Community wird in Form von Feedbackschleifen geprüft und gegebenenfalls umgesetzt.

Bards Wert für die Gesellschaft

Der Name des Programms Bard stammt übrigens vom Begriff „Barde” ab. Dabei handelt es sich um Dichter und Sänger des damaligen keltischen Kulturkreises, die mit ihrer Kunst Informationen weitergaben. Genau wie die KI Bard. Die generative KI befindet sich noch in der Entwicklung, soll laufend weiterentwickelt werden und über das Potenzial verfügen, Anwendungen zu revolutionieren.

Die finale Botschaft des Director of Product Management ist eindeutig: „Die Technologie KI ist zu komplex, als dass eine einzelne Organisation sie alleine bewältigen könnte, daher ist eine Zusammenarbeit zwischen Regierung, Unternehmern und Hochschulen unbedingt erforderlich. Genauso wichtig ist es, die Menschen über den Wert von KI aufzuklären und ihnen dabei zu helfen, die Vorteile der Technologie für sich zu nutzen.” 

Deine ungelesenen Artikel:
20.01.2025

KI-Geschäftsmodelle: “Wir nutzen nur einen Bruchteil dessen, was möglich ist”

Macht Künstliche Intelligenz Unternehmen nur effizienter – oder verändert sie sogar ganze Geschäftsmodelle? In der vierten Folge von „No Hype KI“ diskutieren Ana Simic (Propeller), Nikolaus Marek (IBM), Saskya Lipp (CANCOM Austria) und Mic Hirschbrich (Apollo.ai) über Chancen, Herausforderungen und die Rolle des Menschen in einer KI-getriebenen Zukunft.
/artikel/no-hype-ki-folge-4
20.01.2025

KI-Geschäftsmodelle: “Wir nutzen nur einen Bruchteil dessen, was möglich ist”

Macht Künstliche Intelligenz Unternehmen nur effizienter – oder verändert sie sogar ganze Geschäftsmodelle? In der vierten Folge von „No Hype KI“ diskutieren Ana Simic (Propeller), Nikolaus Marek (IBM), Saskya Lipp (CANCOM Austria) und Mic Hirschbrich (Apollo.ai) über Chancen, Herausforderungen und die Rolle des Menschen in einer KI-getriebenen Zukunft.
/artikel/no-hype-ki-folge-4

„No Hype KI” wird unterstützt von CANCOM AustriaIBMITSVMicrosoftNagarroRed Hat und Universität Graz.

Macht künstliche Intelligenz Unternehmen nur effizienter? Oder ist die Technologie transformativ und verändert auch Geschäftsmodelle? Welche Rolle spielen menschliche Faktoren? Was Antworten auf diese Fragen sind und ob es sich dabei möglicherweise um gar keine Gegensätze handelt, dem geht die vierte Folge von “No Hype KI” nach. Zu Gast waren Ana Simic (Propeller | Gründerin), Nikolaus Marek (IBM | Tech Sales Leader), Saskya Lipp (CANCOM Austria | Portfolio & Product Manager Business Innovation) und Mic Hirschbrich (Apollo.ai | Co-Founder).

Effizienz und Disruption

In der österreichischen Wirtschaft wird KI bis dato oft als Mittel zur Effizienzsteigerung eingesetzt. Doch wie groß ist das Potenzial darüber hinaus, um ganze Geschäftsmodelle zu transformieren? „Das glaube ich jedenfalls“, sagt Mic Hirschbrich, Co-Founder von Apollo.ai. “Ich glaube, dass sich jetzt in den kommenden Jahren die Spreu vom Weizen trennen wird.” Es reiche nicht, beliebig generative Modelle einzusetzen: “Wer glaubt, er kann das ohne Vorarbeit und Sicherheitsmaßnahmen großflächig ausrollen, wird ein böses Erwachen erleben.“

Saskya Lipp, Portfolio & Product Manager Business Innovation bei CANCOM Austria, beobachtet bereits Veränderungen: „Ich finde, man sieht es jetzt schon recht stark, dass sich bestehende Geschäftsmodelle durch Effizienzsteigerungen transformiert haben.” Als Beispiel führt sie die Automatisierung in der Produktion oder die Personalisierung im Customer-Bereich an. Sie geht davon aus, dass neue Geschäftsmodelle entstehen – insbesondere durch Agentic AI. Als Beispiel führt sie Voice-Bot-as-a-Service-Anwendungen an.

Agentic AI bezeichnet KI-Systeme, die nicht nur auf Eingaben reagieren, sondern auch eigenständig Aktionen ausführen und Entscheidungen treffen können. Während klassische Chatbots meist bloß antworten und Informationen bereitstellen, agiert eine Agentic AI eher wie ein digitaler Assistent, der Proaktivität zeigt und Aufgaben eigenverantwortlich übernimmt.

Mehr als nur Chatbots

Für viele Unternehmen bleibt die Frage, ob sie KI bloß als Support-System nutzen oder ihre Prozesse tatsächlich umfassend umkrempeln. Tech Sales Leader Nikolaus Marek von IBM sagt dazu: „Sehr viele Unternehmen beginnen erst einmal mit KI-Projekten zur reinen Effizienzsteigerung, um überhaupt in die Lernphase einzusteigen. Das heißt, sie setzen sich mit der Technologie auseinander, machen erste Schritte, aber sie verwenden sie noch nicht wirklich disruptiv.“

Dennoch können auch Maßnahmen zur Effizienzsteigerung führen. Gerade im Patentmanagement habe IBM ein Projekt mit ABP Patent Network umgesetzt, bei dem KI nicht nur Zeit und Ressourcen spart, sondern ein ganz neues Angebot ermöglicht: “Da haben wir ein Modell mit 160 Millionen verfügbaren Patenten trainiert, um Patentanwälten ein Tool zu geben, um Patente schneller anzumelden” Das würde gleichzeitig disruptiv, sowie effizienzsteigerend sein.

Ana Simic, Gründerin von Propeller, plädiert dafür: “Die KI verändert nicht nur Geschäftsmodelle, sie verändert uns Menschen. KI werde langfristig mehr sein als nur ein weiterer Automatisierungshebel zur Effizienzsteigerung. Simic verweist auf den neuen World Job Report des World Economic Forum, wonach 60 Prozent aller Geschäftsmodelle KI-bedingt verändern werden und sich der globale KI-Markt in den nächsten acht Jahren von derzeit 300 Milliarden Dollar auf drei Billionen Dollar verzehnfachen werde.

Mic Hirschbrich hebt in Bezug auf Effizienz und Disruption hervor, dass KI in der Unternehmensführung nicht zwangsläufig „alles auf den Kopf stellen“ muss. “Wenn ich KI zur Entscheidungsunterstützung in Unternehmen einsetze, möchte ich eine verlässliche Basis schaffen, die Führungskräften bei ihrer Haftung und bei ihrer Entscheidungsqualität hilft.” Hier würde man keine radikale Disruption brauchen, sondern vielmehr eine sichere und nachvollziehbare KI. Zudem müsse man bei Use-Cases bewusst zwischen Assistenz und Substitution unterscheiden.

Agentic AI, Akzeptanz und die Zukunft der Interaktion

Wo KI heute bereits oft ansetzt, sind Chat- und Voicebots. Doch wie hoch ist die Akzeptanz? “Ich glaube, die Kundinnen und Kunden werden sich daran gewöhnen“, sagt Marek. “Wir hatten am Anfang regelbasierte Chatbots, die rasch an ihre Grenzen gestoßen sind. Jetzt erkennen Transformer-Modelle natürliche Sprache deutlich besser, was die Akzeptanz steigert.“ Entscheidend sei, wie Unternehmen damit umgehen: “Show me, tell me and do it for me. Das heißt, mir die richtige Information zu liefern, mir meinen nächsten Schritt zu erklären und im Idealfall auch gleich in den Systemen dafür zu sorgen, dass er ausgeführt wird.”

Für Saskya Lipp liegt der nächste Schritt schon in Reichweite: “Agentic AI heißt, dass sich Prozesse automatisieren.” Unter anderem führt sie autonome Produkte ins Spiel, wie eine Heizung, die selbst entscheidet, ob sie sich höher oder niedriger einstellt. Im Bereich von Agentic AI wird man künftig auch vermehrt neue Ertragsmodelle sehen.

Von großen und kleinen Modellen: Was tun mit Daten?

Die Entwicklung der Basistechnologien stellt Unternehmen vor die Wahl, große vortrainierte Modelle zu nutzen oder eigene KI-Modelle zu bauen. Bei IBM verfolgt man den Ansatz, verschiedene Modelle auf einer Plattform bereitzustellen. Dazu gehöre auch, die nötige Governance zu bedenken, damit Verantwortliche bei gesetzlichen Vorgaben und Haftungsfragen sicher seien. “Gerade in regulierten Branchen wie dem Finanzwesen ist das essenziell. Wer sein Geschäftsmodell auf KI stützt, muss sichergehen, dass Datenbasis und Governance passen.” Auch CANCOM Austria berät dazu, ergänzt Lipp. “Bei KMU sehen wir, dass es effizienter ist, auf vorhandene Modelle aufzusetzen und dann ein Fine-Tuning zu machen.”

Regulatorik als Stolperstein – oder als Chance?

Regulierung kann Innovation hemmen, wie Hirschbrich aus eigener Erfahrung weiß. “Wir haben damals versucht, ein Produkt im Medienbereich aufzubauen, sind aber an europäischen Datenschutzvorgaben gescheitert, während in den USA ganz andere Freiheiten herrschen. Da sehe ich die Gefahr, dass internationale Player den Markt überschwemmen und europäische Anbieter gar nicht zum Zug kommen.”

Allerdings, so Nikolaus Marek von IBM, sei Governance und Compliance im Geschäftsbereich unabdingbar. Er betonte, dass man Regulatorik entweder als Hürde betrachten oder KI nutzen könne, um diese Hürde zu überwinden. Governance-Tools ermöglichten es dabei, nachvollziehbar zu machen, welche Daten auf welche Weise verwendet worden seien. Dies sei unverzichtbar, wenn ein Geschäftsmodell auf KI aufgebaut werde. IBM verfolgt im Bereich Governance einen ganzheitlichen Ansatz, der die gesamte KI-Wertschöpfungskette abdeckt – von der Datenaufbereitung über das Training bis zum laufenden Monitoring der Modelle. Dabei setzt IBM auf watsonx.governance, um die fortlaufend zu prüfen, ob ein Modell Abweichungen, Halluzinationen oder Biases aufweist.

Simic will sich weder vom Thema Regulierung noch von anderen Fragen bremsen lassen: “In Europa ist jetzt schon vieles möglich. Wir nutzen nur einen Bruchteil dessen, was schon möglich ist”. Es gilt jetzt für Unternehmen herauszufinden, welche Use-Case möglich sind. Wichtig sei dabei jedoch die menschliche Komponente nicht zu unterschätzen.

Wohin führt die Reise in den nächsten zwölf Monaten?

Am Ende des Talks richteten die Expert:innen ihren Blick auf die Entwicklungen der nächsten zwölf Monate, um zu diskutieren, welche konkreten Auswirkungen die rasant fortschreitende KI auf künftige Geschäftsmodelle haben könnte.

“Die Entwicklung ist rasant“, sagt Hirschbrich. „Ich glaube, dass wir uns weiter entfernen von einzelnen Modellen, die alles machen, und mehr zu einem Mix an KI-Tools kommen.“ Zudem werden die Grenzkosten für Sprachmodelle weiter sinken. Lipp rechnet damit, dass Agentic AI schon bald stärker Fuß fassen wird.

Marek erwartet eine Kombination aus Mut und Vorbereitung und gibt Unternehmen mit auf den Weg: “Bringt eure Daten in Ordnung”. Und auch Ana Simic meint: „Softwareentwicklung und Marketing waren die ersten Bereiche, in denen KI schon große Fortschritte gemacht hat.” In einer nächsten Phase erwartet die Expertin Fortschritte im Gesundheitsbereich bei R&D-Aktivitäten. Auch für die heimische Industrie sieht sie große Chancen.


Die gesamte Folge ansehen

Die Nachlesen der bisherigen Folgen:

Folge 1: “No Hype KI – wo stehen wir nach zwei Jahren ChatGPT?

Folge 2: “Was kann KI in Gesundheit, Bildung und im öffentlichen Sektor leisten?

Folge 3: “Der größte Feind ist Zettel und Bleistift”: Erfolgsfaktoren und Herausforderungen in der KI-Praxis”


Die Serie wird von brutkasten in redaktioneller Unabhängigkeit mit finanzieller Unterstützung unserer Partner:innen produziert.

No Hype KI



Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag

AI Summaries

Bard: Was hinter Googles Chatbot steckt – und wie er sich von ChatGPT unterscheidet

AI Kontextualisierung

Welche gesellschaftspolitischen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Bard: Was hinter Googles Chatbot steckt – und wie er sich von ChatGPT unterscheidet

AI Kontextualisierung

Welche wirtschaftlichen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Bard: Was hinter Googles Chatbot steckt – und wie er sich von ChatGPT unterscheidet

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Innovationsmanager:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Bard: Was hinter Googles Chatbot steckt – und wie er sich von ChatGPT unterscheidet

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Investor:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Bard: Was hinter Googles Chatbot steckt – und wie er sich von ChatGPT unterscheidet

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Politiker:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Bard: Was hinter Googles Chatbot steckt – und wie er sich von ChatGPT unterscheidet

AI Kontextualisierung

Was könnte das Bigger Picture von den Inhalten dieses Artikels sein?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Bard: Was hinter Googles Chatbot steckt – und wie er sich von ChatGPT unterscheidet

AI Kontextualisierung

Wer sind die relevantesten Personen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Bard: Was hinter Googles Chatbot steckt – und wie er sich von ChatGPT unterscheidet

AI Kontextualisierung

Wer sind die relevantesten Organisationen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Bard: Was hinter Googles Chatbot steckt – und wie er sich von ChatGPT unterscheidet