25.07.2022

EDD: Business Angels entwickeln Profiling-Software für Startup-Teams

Die Profiling-Software EDD soll Entscheidungen von Startup-Investor:innen objektivieren. Bewertet werden Persönlichkeiten und deren Zusammenspiel als Team.
/artikel/edd-software-startup-team
V.l: Hinter EDD stehen BWS Invest (Thomas Stranig, Walter Antosch, Vero Neubacher), Thomas Frauscher und Martin Böhacker © EDD Research
V.l: Hinter EDD stehen BWS Invest (Thomas Stranig, Walter Antosch, Vero Neubacher), Thomas Frauscher und Martin Böhacker © EDD Research

An A team with a B idea beats a B team with an A idea. Dieser Satz gehört für fast alle Startup-Investor:innen zu den Grundlagen und die Bewertung des Gründer:innen-Teams dürfte immer stärker durch Software erfolgen. „Wenn es um Erfolgsprognosen geht, ist der Faktor „Team“ einer der wesentlichsten, aber auch – bis jetzt – der am wenigsten greifbare“, schreiben jene Business Angels, die hinter der Software „EDD“ stehen.

EDD ist kurz für Emotional Due Dilligence und bewertet Gründer:innen nach einer „ausführlichen, psychologisch austarierten Online-Befragung“. Die Ergebnisse helfen den Initiatoren bei der Due Dilligence ihrer anvisierten Investments – EDD steht aber auch Kunden zur Verfügung. Eine Analyse kostet 750 Euro – bei einer Bestellung als 5er Block oder Abo sinkt der Preis.

Wer hinter EDD steht

Hinter der Hagenberger EDD Research GmbH steht maßgeblich die in Salzburg gegründete BWS Invest GmbH der drei Business Angels Thomas Stranig, Walter Antosch und Vero Neubacher. Für die Umsetzung von EDD haben die drei mit Martin Böhacker den Inhaber einer Software-Firma und mit Thomas Frauscher einen weiteren bekannten Business Angel an Bord geholt – Frauscher war bis 2001 Manager bei Ikea und ist seither Investor.

So funktioniert die Software

EDD bewertet drei unterschiedliche Benchmarks: Emotionale Reife und Resilienz, Energielevel und Ausdauer, sowie Orientierung und innerer Antrieb. Im Detailreport werden laut den Initiatoren 21 Subfaktoren berücksichtigt und neben einer Einzelauswertung der Gründungspersönlichkeiten auch deren Zusammenspiel als Team bewertet. Am Ende stehe auch eine konkrete KPI und zwar die Erfolgswahrscheinlichkeit auf Basis relevanter Persönlichkeitsmerkmale.

Mit EDD wollen die Business Angels die Bewertung des Teams auch objektivieren. „Besonders charismatische Persönlichkeiten können überzeugen“, schreiben sie. „Häufig lässt man sich von diesem Glanz blenden und traut diesen Persönlichkeiten zu, alles zu meistern – starke, für alles gewappnete Unternehmer zu sein. EDD macht auch weniger offensichtliche Traits sichtbar, die jedoch genauso wichtig sind und vielleicht erst in einer späteren Phase relevant werden“.

Auch Speedinvest setzt auf Software

Die Business-Angel-Gruppe ist nicht das einzige Investorenteam, das eine Software zur Bewertung von Teams entwickelt. Der in Wien ansäßige Frühphasen-VC Speedinvest will im August mit einer „Career Prediction & Simulation“ AI starten, die nach dem Profiling auch konkrete Positionen wie etwa „Head of Product“ vorschlägt. Nach zwei Jahren Forschung will man damit demnächst in eine Beta-Phase und gegen Ende des Jahres in den Regelbetrieb starten.

Deine ungelesenen Artikel:
18.04.2025

patentbutler.ai will Zeit für Patentrecherchen deutlich verkürzen

Eine neue KI‐Plattform will Recherche‑ und Monitoring­aufwand im Patent-Bereich deutlich reduzieren. Dahinter stehen das oberösterreichische Unternehmen ABP Patent Network und IBM. Ihr gemeinsames SaaS‑Produkt kombiniert austauschbare Large‑Language‑Modelle mit On‑Prem‑Hardware.
/artikel/patentbutler-ai-ibm-abp
18.04.2025

patentbutler.ai will Zeit für Patentrecherchen deutlich verkürzen

Eine neue KI‐Plattform will Recherche‑ und Monitoring­aufwand im Patent-Bereich deutlich reduzieren. Dahinter stehen das oberösterreichische Unternehmen ABP Patent Network und IBM. Ihr gemeinsames SaaS‑Produkt kombiniert austauschbare Large‑Language‑Modelle mit On‑Prem‑Hardware.
/artikel/patentbutler-ai-ibm-abp
Marco Porak (IBM) und Daniel Holzner
Marco Porak (IBM) und Daniel Holzner (ABP) | Foto: IBM/H. Klemm

Wer eine Idee patentieren will, muss mühsam Fachsprache lernen oder teure externe Hilfe einkaufen. „Man glaubt gar nicht, wie viele Erfinder glauben, sie hätten etwas erfunden“, erläuterte der Geschäftsführer von ABP Patent Network, Daniel Holzner, bei einer gemeinsamen Pressekonferenz in Wien mit Marco Porak, Generaldirektor von IBM Österreich. Das muss aber erst einmal überprüft werden.

Patentbutler.ai will hier Abhilfe schaffen: Die Nutzer:innen kopieren ihren Entwurf in ein Textfeld, die KI formt ihn in juristisch korrekte Patentansprüche um und zerlegt ihn zugleich in einzelne technische Merkmale. Das System durchsucht 170 Millionen Patentveröffentlichungen, die es vorab vektorisiert hat. Ein semantischer Abgleich zeigt, welche Publikationen die Merkmal‑Listen überdecken; eine Ampelfärbung markiert die Trefferquote. 

Die Suche dauert gut 30 Sekunden und lieferte im Demo‑Fall auf der Pressekonferenz 60 relevante Patentfamilien. Im Patentwesen werden Anmeldungen für dieselbe Erfindung in verschiedenen Ländern zu sogenannten Patentfamilien zusammengefasst. Weltweit existieren etwa 68 Millionen solcher Patentfamilien, die sich in den 170 Millionen Patentveröffentlichungen widerspiegeln. 

Mehrere Modelle für unterschiedliche Aufgaben

Patentbutler.ai baut auf Watson X von IBM, nutzt aber nicht nur IBMs Granite‑Modelle. „Wir wussten, wir können uns und wollen uns nicht auf einzelne Modelle fokussieren“, sagte Holzner. Die Software wählt je nach Aufgabe das bestgeeignete LLM: ein generatives Modell für die Text­transformation, ein multimodales Modell für Zeichnungen und ein Embedding‑Modell für die Vektor‑Suche. Open‑Source‑Modelle von Hugging Face lassen sich ebenso einbinden wie proprietäre Alternativen.

Halluzinationen begegnet ABP mit Feintuning auf patent­spezifische Trainingssätze und mit Watson X Governance, das jede Modellversion samt Trainingsdaten protokolliert. Parallel dazu arbeitet das Team mit IBM daran, die Datenbasis selbst stets aktuell zu halten. „Wir haben es in unserer engen Zusammenarbeit geschafft, den Datenbestand tagesaktuell zu halten“, erläuterte IBM‑Österreich‑Chef Marco Porak.

SaaS-Angebot und Appliance-Version

Die KI läuft nicht in einer Public Cloud, sondern über ein Rechenzentrum in Österreich. Neben Patentbutler.ai Prompting, einem Chat‑Interface für sicheres Prompten ohne Datenabfluss, und Patentbutler.ai Search, der voll­wertigen Recherche‑ und Analyse­umgebung als SaaS, gibt es als weiteres Angebot noch Patentbutler.ai Appliance – eine Kombination aus Hardware und Software für den Betrieb mit eigener Infrastruktur.

Die Lizenz orientiert sich an Nutzerzahl und Dokumentvolumen. Bereits in der MVP‑Phase gewann ABP erste Industrie­kunden, deren Namen das Unternehmen noch nicht öffentlich macht. Die Anwendung will aber nicht nur forschende Konzerne adressieren. Auch Startups und KMU sehen die beiden Unternehmen als Zielgruppe – etwa um Anmeldungen von Konkurrenten zu überwachen.

Vor 18 Monaten mit Minimal-Prototyp gestartet

Das Projekt startete vor 18 Monaten mit einem Minimal­prototyp. Seither tauschten die Partner Modelle, entwickelten ein Framework für automatisierte Modell­auswahl und optimierten die Daten­pipeline. Porak beschreibt die Zusammenarbeit als ständiges Ping‑Pong zwischen IP‑Expertinnen und KI‑Ingenieurinnen. Etabliert sich das Produkt am Markt, könnte aus einem Spezial­werkzeug ein Standard im IP‑Management werden – und die Zeit der manuellen Patent­suche endgültig enden.

Für die kommenden Monate ist geplant, den Patentbutler weiter im Markt zu etablieren. Dazu gehört die Einführung der Appliance-Variante, die es Unternehmen ermöglicht, die Software und Hardware mit eigener Infrastruktur zu betreiben. Außerdem ist vorgesehen, die Technologie auf weitere Dokumenttypen wie Produktdokumentationen und technische Richtlinien auszuweiten.

18.04.2025

patentbutler.ai will Zeit für Patentrecherchen deutlich verkürzen

Eine neue KI‐Plattform will Recherche‑ und Monitoring­aufwand im Patent-Bereich deutlich reduzieren. Dahinter stehen das oberösterreichische Unternehmen ABP Patent Network und IBM. Ihr gemeinsames SaaS‑Produkt kombiniert austauschbare Large‑Language‑Modelle mit On‑Prem‑Hardware.
18.04.2025

patentbutler.ai will Zeit für Patentrecherchen deutlich verkürzen

Eine neue KI‐Plattform will Recherche‑ und Monitoring­aufwand im Patent-Bereich deutlich reduzieren. Dahinter stehen das oberösterreichische Unternehmen ABP Patent Network und IBM. Ihr gemeinsames SaaS‑Produkt kombiniert austauschbare Large‑Language‑Modelle mit On‑Prem‑Hardware.
Marco Porak (IBM) und Daniel Holzner
Marco Porak (IBM) und Daniel Holzner (ABP) | Foto: IBM/H. Klemm

Wer eine Idee patentieren will, muss mühsam Fachsprache lernen oder teure externe Hilfe einkaufen. „Man glaubt gar nicht, wie viele Erfinder glauben, sie hätten etwas erfunden“, erläuterte der Geschäftsführer von ABP Patent Network, Daniel Holzner, bei einer gemeinsamen Pressekonferenz in Wien mit Marco Porak, Generaldirektor von IBM Österreich. Das muss aber erst einmal überprüft werden.

Patentbutler.ai will hier Abhilfe schaffen: Die Nutzer:innen kopieren ihren Entwurf in ein Textfeld, die KI formt ihn in juristisch korrekte Patentansprüche um und zerlegt ihn zugleich in einzelne technische Merkmale. Das System durchsucht 170 Millionen Patentveröffentlichungen, die es vorab vektorisiert hat. Ein semantischer Abgleich zeigt, welche Publikationen die Merkmal‑Listen überdecken; eine Ampelfärbung markiert die Trefferquote. 

Die Suche dauert gut 30 Sekunden und lieferte im Demo‑Fall auf der Pressekonferenz 60 relevante Patentfamilien. Im Patentwesen werden Anmeldungen für dieselbe Erfindung in verschiedenen Ländern zu sogenannten Patentfamilien zusammengefasst. Weltweit existieren etwa 68 Millionen solcher Patentfamilien, die sich in den 170 Millionen Patentveröffentlichungen widerspiegeln. 

Mehrere Modelle für unterschiedliche Aufgaben

Patentbutler.ai baut auf Watson X von IBM, nutzt aber nicht nur IBMs Granite‑Modelle. „Wir wussten, wir können uns und wollen uns nicht auf einzelne Modelle fokussieren“, sagte Holzner. Die Software wählt je nach Aufgabe das bestgeeignete LLM: ein generatives Modell für die Text­transformation, ein multimodales Modell für Zeichnungen und ein Embedding‑Modell für die Vektor‑Suche. Open‑Source‑Modelle von Hugging Face lassen sich ebenso einbinden wie proprietäre Alternativen.

Halluzinationen begegnet ABP mit Feintuning auf patent­spezifische Trainingssätze und mit Watson X Governance, das jede Modellversion samt Trainingsdaten protokolliert. Parallel dazu arbeitet das Team mit IBM daran, die Datenbasis selbst stets aktuell zu halten. „Wir haben es in unserer engen Zusammenarbeit geschafft, den Datenbestand tagesaktuell zu halten“, erläuterte IBM‑Österreich‑Chef Marco Porak.

SaaS-Angebot und Appliance-Version

Die KI läuft nicht in einer Public Cloud, sondern über ein Rechenzentrum in Österreich. Neben Patentbutler.ai Prompting, einem Chat‑Interface für sicheres Prompten ohne Datenabfluss, und Patentbutler.ai Search, der voll­wertigen Recherche‑ und Analyse­umgebung als SaaS, gibt es als weiteres Angebot noch Patentbutler.ai Appliance – eine Kombination aus Hardware und Software für den Betrieb mit eigener Infrastruktur.

Die Lizenz orientiert sich an Nutzerzahl und Dokumentvolumen. Bereits in der MVP‑Phase gewann ABP erste Industrie­kunden, deren Namen das Unternehmen noch nicht öffentlich macht. Die Anwendung will aber nicht nur forschende Konzerne adressieren. Auch Startups und KMU sehen die beiden Unternehmen als Zielgruppe – etwa um Anmeldungen von Konkurrenten zu überwachen.

Vor 18 Monaten mit Minimal-Prototyp gestartet

Das Projekt startete vor 18 Monaten mit einem Minimal­prototyp. Seither tauschten die Partner Modelle, entwickelten ein Framework für automatisierte Modell­auswahl und optimierten die Daten­pipeline. Porak beschreibt die Zusammenarbeit als ständiges Ping‑Pong zwischen IP‑Expertinnen und KI‑Ingenieurinnen. Etabliert sich das Produkt am Markt, könnte aus einem Spezial­werkzeug ein Standard im IP‑Management werden – und die Zeit der manuellen Patent­suche endgültig enden.

Für die kommenden Monate ist geplant, den Patentbutler weiter im Markt zu etablieren. Dazu gehört die Einführung der Appliance-Variante, die es Unternehmen ermöglicht, die Software und Hardware mit eigener Infrastruktur zu betreiben. Außerdem ist vorgesehen, die Technologie auf weitere Dokumenttypen wie Produktdokumentationen und technische Richtlinien auszuweiten.

Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag