19.12.2017

Datengetriebene Marketing-Entscheidungen – wo anfangen?

Gastkommentar. Alexander Igelsböck von Adverity beschreibt für uns entscheidende Punkte für eine erfolgreiche Datenstrategie im Marketing.
/artikel/datengetriebene-marketing-entscheidungen-datenstrategie
adverity igelsböck Datenstrategie
(c) Adverity: Die Co-Founder Martin-Brunthaler und Alexander Igelsböck

Datenstrategie. Gastkommentar von Alexander Igelsböck, Gründer und CEO von Adverity.


Als Internetnutzer produzieren wir alle eine gigantische Menge an Daten, ob wir wollen oder nicht. Jede noch so kleine Interaktion bei Facebook, Amazon oder anderen Online-Plattformen wird registriert und als Dateneintrag gespeichert. Und diese Daten bieten den sammelnden Firmen einen großen Wert: das Wissen, was uns gefällt, was wir tun, was wir suchen, kann zu Geld gemacht werden.

+++ Warum die Digitale Transformation in der Marketing-Abteilung beginnt +++

“Wenn du nicht dafür bezahlst, bist du selbst das Produkt”

Es gibt den bekannten Ausspruch: “Wenn Du nicht dafür bezahlst, bist Du nicht der Kunde. Dann bist Du das Produkt, das verkauft wird.” Die gewieften Betreiber der Online-Plattformen verkaufen die Nutzungsdaten an Werbetreibende, die wiederum angepasste Werbung ausspielen. Die Werbetreibenden selbst sammeln ebenso Daten der Kunden ein und gewinnen Rückschlüsse über einen Webseitenbesucher: die Zeit, die ein möglicher Kunde auf bestimmten Seiten verbringt, ist ein starker Indikator, wie interessiert er ist. Ein einfaches Beispiel wäre der Besuch einer Seite mit Preisinformationen – je ausführlicher diese studiert wird, umso wahrscheinlicher ist ein Vertragsabschluß. Kurzum: deine Daten sind enorm wertvoll für Unternehmen, die etwas verkaufen wollen.

Kann man im Daten-Heuhaufen tatsächlich eine Nadel finden?

Doch diese vereinfachte Darstellung wird bei näherer Betrachtung kompliziert: Denn nicht alle Daten sind aussagekräftig. Wir wissen aus unserer täglichen Arbeit mit Werbetreibenden: Nur wenn man sich auf die richtigen Bereiche fokussiert, erhält man auch wertvolle Erkenntnisse – andernfalls droht man sich in der Zahlenwüste zu verlaufen. Ein häufiges Beispiel ist der Marketingverantwortliche, der zu Beginn seiner “Datengetriebenen Strategie” einfach alles analysieren will, in der Hoffnung, eine grandiose Erkenntnis würde ihm schon in den Schoß fallen. Die Nadel im Heuhaufen wäre eine richtige Analogie, wenn man sich sicher wäre, dass man eine Nadel sucht. Wenn man sich der Frage nicht sicher ist, kann es keine befriedigende Antwort geben.

Die richtigen Fragen für die Datenstrategie

Am Ende des Tages muss man seine Datensammlung wie jedes andere Produkt betrachten: Entweder bringt es einen Mehrwert oder eben nicht. Um einen entsprechenden Wert überhaupt bestimmen zu können, muss man die richtigen Fragen stellen. Überraschenderweise gehört das aber zu den größten Herausforderungen für Marketingentscheider: implizites Wissen über sein Produkt zu konkreten, mit Daten verifizierbare Fragestellungen zu formulieren ist schwierig, aber die Grundlage für eine Datenstrategie.

Wenig verwunderlich, ist eine Datenstrategie viel mehr als nur eine Anhäufung von Nutzerdaten: Es beginnt mit der Definition der Ziele und führt ohne Umwege zu den Fragen: welche Daten brauche ich, um die Frage zu beantworten? Wo speichere ich diese Daten überhaupt – reicht eine Excel-Pivot-Tabelle oder brauche ich eine aufwändigere Lösung? Welche Software brauche ich für die Analyse – und welcher Mitarbeiter kümmert sich eigentlich um all diese Prozesse?

Man braucht Geduld

Um die Erwartungen gleich zu Beginn richtig einzuordnen: Man braucht sehr viel Geduld, so trivial das klingen mag. Wir wissen von unseren Marktumfragen, dass 70 Prozent aller CEOs die genaue Analyse ihrer Marketingdaten für den Unternehmenserfolg als wichtig betrachten – aber nur 27 Prozent geben an, derzeit in einer guten Ausgangsposition für erfolgreiche Analytics zu sein. Und es wäre falsch, einzig den Marketingabteilungen die Schuld zu geben: Wir hören in unseren Diskussionen mit Kunden, wie dringend eine Problemlösung gesucht wird, ohne dass unternehmensintern die vielen Implikationen und der Umfang dieser Transformation beachtet wird.

7 Punkte für die bessere Datenstrategie

All dies zeigt, wie weit Ambition und Unternehmensrealität derzeit auseinander liegen – und diese Lücke muss geschlossen werden, bevor man den Anschluss an den wettbewerbsstarken Markt verliert. Daher haben wir nochmal eine handliche Checkliste mit den wichtigsten Punkten zusammengestellt, die man im Auge behalten sollte:

  1. Wenn man eine Datenstrategie erstellt, muss man die richtigen Fragen stellen. Das Ziel sollte auch  sein, seine eigenen Annahmen infrage zu stellen, anstatt ausschließlich eigene Hypothesen zu bestätigen. Es kann ein durchaus reinigender Prozess sein, vermeintliche Selbstverständlichkeiten nochmal zu überprüfen.
  2. Unternehmens- und fachliche Ziele sollten deutlich formuliert sein, um diese mit den Ergebnissen der Analyse bestätigen zu können. Mit einem klaren Blick kann man die neu gewonnen Erkenntnisse auch gleich in wirkungsvolle Maßnahmen umwandeln.
  3. Eine realistische Zeitvorgabe und die richtigen Tools sind notwendig, um ans Ziel zu kommen. Auch die Aufgabenverteilung muss klar geregelt sein, womöglich braucht es Experten im Team, die sich ausschließlich um die Marketinganalysen kümmern.
  4. Kennziffern oder Key-Performance-Indicators (KPI) sollten bewusst und in begrenztem Rahmen gewählt werden – man kann nicht in alle Richtungen gleichzeitig marschieren. Wichtig hierbei: die Komfortzone verlassen und auch neue KPIs erforschen bzw. Erfinden: jedes Unternehmen ist anders und vielleicht braucht dein Produkt eine besondere Herangehensweise.
  5. Kontext ist extrem wichtig. Daten sind vor allem in Relationen sinnvoll, ein Kampagnenerfolg ist nur mit ähnlichen Aktivitäten oder über ähnliche Zeiträume vergleichbar. Im Vordergrund sollte hier eine kontinuierliche Verbesserung der relevanten KPIs stehen.
  6. Wie in vielen anderen betrieblichen Zusammenhängen gilt bei Marketing Analytics: Führungsstärke ist die wichtigste Disziplin. Als Marketing Leader muss man nicht nur Verantwortung übernehmen, sondern auch als Vorbild agieren: KPIs und Ziele genau kennen, realistische Ziele setzen, dem Team auch Raum für Experimente und Fehler einräumen, allen Mitarbeitern die Möglichkeit geben, die Details zu erlernen und Routinen zu optimieren.
  7. Nicht alle Ergebnisse werden befriedigend oder in konkrete Maßnahmen umwandelbar sein. Auch das ist OK. Die Gewissheit, vieles (noch) nicht zu wissen, kann gewissermaßen ermunternd sein, noch weiter am Produkt, am Targeting oder an der Kampagne zu arbeiten.

+++ Big Data: Nach dem Hype ist vor der Chance +++


Alexander Igelsböck ist Mitgründer und CEO des Wiener Startups Adverity, das sich als Ziel gesetzt hat, Agenturen und Werbetreibenden die Arbeit mit ihren Marketingdaten radikal zu vereinfachen.

Deine ungelesenen Artikel:
16.12.2024

“Die Zeit des Zuwartens ist vorbei”

Nachlese. Wo steht die österreichische Wirtschaft bei künstlicher Intelligenz zwei Jahre nach Erscheinen von ChatGPT? Dies diskutieren Doris Lippert von Microsoft und Thomas Steirer von Nagarro in der ersten Folge der neuen brutkasten-Serie "No Hype KI".
/artikel/no-hype-ki-folge-1-nachlese
16.12.2024

“Die Zeit des Zuwartens ist vorbei”

Nachlese. Wo steht die österreichische Wirtschaft bei künstlicher Intelligenz zwei Jahre nach Erscheinen von ChatGPT? Dies diskutieren Doris Lippert von Microsoft und Thomas Steirer von Nagarro in der ersten Folge der neuen brutkasten-Serie "No Hype KI".
/artikel/no-hype-ki-folge-1-nachlese
Doris Lippert (Microsoft | Director Global Partner Solutions und Mitglied der Geschäftsleitung) und Thomas Steirer (Nagarro | Chief Technology Officer)
Doris Lippert (Microsoft | Director Global Partner Solutions und Mitglied der Geschäftsleitung) und Thomas Steirer (Nagarro | Chief Technology Officer) | Foto: brutkasten

“No Hype KI” wird unterstützt von CANCOM Austria, IBM, ITSV, Microsoft, Nagarro, Red Hat und Universität Graz


Mit der neuen multimedialen Serie “No Hype KI” wollen wir eine Bestandsaufnahme zu künstlicher Intelligenz in der österreichischen Wirtschaft liefern. In der ersten Folge diskutieren Doris Lippert, Director Global Partner Solutions und Mitglied der Geschäftsleitung bei Microsoft Österreich, und Thomas Steirer, Chief Technology Officer bei Nagarro, über den Status Quo zwei Jahre nach Erscheinen von ChatGPT.

Du willst bei "No Hype KI" am Laufenden bleiben?

Trag dich hier ein und du bekommst jede Folge direkt in die Inbox!

„Das war ein richtiger Hype. Nach wenigen Tagen hatte ChatGPT über eine Million Nutzer”, erinnert sich Lippert an den Start des OpenAI-Chatbots Ende 2022. Seither habe sich aber viel geändert: “Heute ist das gar kein Hype mehr, sondern Realität“, sagt Lippert. Die Technologie habe sich längst in den Alltag integriert, kaum jemand spreche noch davon, dass er sein Smartphone über eine „KI-Anwendung“ entsperre oder sein Auto mithilfe von KI einparke: “Wenn es im Alltag angekommen ist, sagt keiner mehr KI-Lösung dazu”.

Auch Thomas Steirer erinnert sich an den Moment, als ChatGPT erschien: „Für mich war das ein richtiger Flashback. Ich habe vor vielen Jahren KI studiert und dann lange darauf gewartet, dass wirklich alltagstaugliche Lösungen kommen. Mit ChatGPT war dann klar: Jetzt sind wir wirklich da.“ Er sieht in dieser Entwicklung einen entscheidenden Schritt, der KI aus der reinen Forschungsecke in den aktiven, spürbaren Endnutzer-Bereich gebracht habe.

Von erster Begeisterung zu realistischen Erwartungen

Anfangs herrschte in Unternehmen noch ein gewisser Aktionismus: „Den Satz ‘Wir müssen irgendwas mit KI machen’ habe ich sehr, sehr oft gehört“, meint Steirer. Inzwischen habe sich die Erwartungshaltung realistischer entwickelt. Unternehmen gingen nun strategischer vor, untersuchten konkrete Use Cases und setzten auf institutionalisierte Strukturen – etwa durch sogenannte “Centers of Excellence” – um KI langfristig zu integrieren. „Wir sehen, dass jetzt fast jedes Unternehmen in Österreich KI-Initiativen hat“, sagt Lippert. „Diese Anlaufkurve hat eine Zeit lang gedauert, aber jetzt sehen wir viele reale Use-Cases und wir brauchen uns als Land nicht verstecken.“

Spar, Strabag, Uniqa: Use-Cases aus der österreichischen Wirtschaft

Lippert nennt etwa den Lebensmittelhändler Spar, der mithilfe von KI sein Obst- und Gemüsesortiment auf Basis von Kaufverhalten, Wetterdaten und Rabatten punktgenau steuert. Weniger Verschwendung, bessere Lieferkette: “Lieferkettenoptimierung ist ein Purpose-Driven-Use-Case, der international sehr viel Aufmerksamkeit bekommt und der sich übrigens über alle Branchen repliziert”, erläutert die Microsoft-Expertin.

Auch die Baubranche hat Anwendungsfälle vorzuweisen: Bei Strabag wird mittels KI die Risikobewertung von Baustellen verbessert, indem historische Daten zum Bauträger, zu Lieferanten und zum Bauteam analysiert werden.

Im Versicherungsbereich hat die UNIQA mithilfe eines KI-basierten „Tarif-Bots“ den Zeitaufwand für Tarifauskünfte um 50 Prozent reduziert, was die Mitarbeiter:innen von repetitiven Tätigkeiten entlastet und ihnen mehr Spielraum für sinnstiftende Tätigkeiten lässt.

Nicht immer geht es aber um Effizienzsteigerung. Ein KI-Projekt einer anderen Art wurde kürzlich bei der jüngsten Microsoft-Konferenz Ignite präsentiert: Der Hera Space Companion (brutkasten berichtete). Gemeinsam mit der ESA, Terra Mater und dem österreichischen Startup Impact.ai wurde ein digitaler Space Companion entwickelt, mit dem sich Nutzer in Echtzeit über Weltraummissionen austauschen können. „Das macht Wissenschaft zum ersten Mal wirklich greifbar“, sagt Lippert. „Meine Kinder haben am Wochenende die Planeten im Gespräch mit dem Space Companion gelernt.“

Herausforderungen: Infrastruktur, Daten und Sicherheit

Auch wenn die genannten Use Cases Erfolgsbeispiele zeigen, sind Unternehmen, die KI einsetzen wollen, klarerweise auch mit Herausforderungen konfrontiert. Diese unterscheiden sich je nachdem, wie weit die „KI-Maturität“ der Unternehmen fortgeschritten sei, erläutert Lippert. Für jene, die schon Use-.Cases erprobt haben, gehe es nun um den großflächigen Rollout. Dabei offenbaren sich klassische Herausforderungen: „Integration in Legacy-Systeme, Datenstrategie, Datenarchitektur, Sicherheit – all das darf man nicht unterschätzen“, sagt Lippert.

“Eine große Herausforderung für Unternehmen ist auch die Frage: Wer sind wir überhaupt?”, ergänzt Steirer. Unternehmen müssten sich fragen, ob sie eine KI-Firma seien, ein Software-Entwicklungsunternehmen oder ein reines Fachunternehmen. Daran anschließend ergeben sich dann Folgefragen: „Muss ich selbst KI-Modelle trainieren oder kann ich auf bestehende Plattformen aufsetzen? Was ist meine langfristige Strategie?“ Er sieht in dieser Phase den Übergang von kleinen Experimenten über breite Implementierung bis hin zur Institutionalisierung von KI im Unternehmen.

Langfristiges Potenzial heben

Langfristig stehen die Zeichen stehen auf Wachstum, sind sich Lippert und Steirer einig. „Wir überschätzen oft den kurzfristigen Impact und unterschätzen den langfristigen“, sagt die Microsoft-Expertin. Sie verweist auf eine im Juni präsentierte Studie, wonach KI-gestützte Ökosysteme das Bruttoinlandsprodukt Österreichs deutlich steigern könnten – und zwar um etwa 18 Prozent (brutkasten berichtete). „Das wäre wie ein zehntes Bundesland, nach Wien wäre es dann das wirtschaftsstärkste“, so Lippert. „Wir müssen uns klar machen, dass KI eine Allzwecktechnologie wie Elektrizität oder das Internet ist.“

Auch Steirer ist überzeugt, dass sich für heimische Unternehmen massive Chancen eröffnen: “Ich glaube auch, dass wir einfach massiv unterschätzen, was das für einen langfristigen Impact haben wird”. Der Appell des Nagarro-Experten: „Es geht jetzt wirklich darum, nicht mehr zuzuwarten, sondern sich mit KI auseinanderzusetzen, umzusetzen und Wert zu stiften.“


Folge nachsehen: No Hype KI – wo stehen wir nach zwei Jahren ChatGPT?


Die Serie wird von brutkasten in redaktioneller Unabhängigkeit mit finanzieller Unterstützung unserer Partner:innen produziert.

Die Partner von No Hype KI
Die Partner von No Hype KI
Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag

AI Summaries

Datengetriebene Marketing-Entscheidungen – wo anfangen?

AI Kontextualisierung

Welche gesellschaftspolitischen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Datengetriebene Marketing-Entscheidungen – wo anfangen?

AI Kontextualisierung

Welche wirtschaftlichen Auswirkungen hat der Inhalt dieses Artikels?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Datengetriebene Marketing-Entscheidungen – wo anfangen?

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Innovationsmanager:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Datengetriebene Marketing-Entscheidungen – wo anfangen?

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Investor:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Datengetriebene Marketing-Entscheidungen – wo anfangen?

AI Kontextualisierung

Welche Relevanz hat der Inhalt dieses Artikels für mich als Politiker:in?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Datengetriebene Marketing-Entscheidungen – wo anfangen?

AI Kontextualisierung

Was könnte das Bigger Picture von den Inhalten dieses Artikels sein?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Datengetriebene Marketing-Entscheidungen – wo anfangen?

AI Kontextualisierung

Wer sind die relevantesten Personen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Datengetriebene Marketing-Entscheidungen – wo anfangen?

AI Kontextualisierung

Wer sind die relevantesten Organisationen in diesem Artikel?

Leider hat die AI für diese Frage in diesem Artikel keine Antwort …

Datengetriebene Marketing-Entscheidungen – wo anfangen?