21.03.2020

Coronakrise: Warum es jetzt spezielle Maßnahmen für Startups braucht

In der österreichischen Startup-Szene häufen sich die Stimmen, dass es im Zuge der Corona-Krise spezielle Maßnahmen für Startups braucht. Bestehende Hilfsmaßnahmen wie Garantien berücksichtigen nämlich die spezifischen Voraussetzungen nicht, mit denen Startups am Markt konfrontiert sind.
/artikel/coronakrise-warum-spezielle-hilfe-fur-startups-braucht
Coronakrise

Nach dem Ministerrat am vergangenen Mittwoch kündigte die österreichische Bundesregierung ein 38 Milliarden Euro schweres Hilfsprogramm an, mit dem die Schäden der Coronakrise für die Wirtschaft abgemildert werden sollen. Das Paket verfolgt zwei große Ziele: Erstens soll die Zahlungsunfähigkeit von Unternehmen verhindert und zweitens massenhafte Arbeitslosigkeit abgefedert werden.

+++ Corona und die wirtschaftlichen Folgen +++ 

Eine zentrale Rolle im Hilfspaket nehmen dabei Garantien für die Klein- und Mittelbetriebe ein, die nachträglich auch auf größere Unternehmen ausgeweitet wurden. Durch die Überbrückungsgarantie soll Unternehmen die Aufnahme von Krediten bei ihrer Hausbank erleichtert werden, da der Staat mit Sicherheiten einspringt. 

Doch inwiefern hilft dieses Instrumentarium Startups, deren Geschäftsmodelle für Banken in der Regel zu riskant sind und sich daher über Risikokapital finanzieren müssen? Und wie könnte ein Rettungspaket speziell für Startups aussehen?

In der Coronakrise stehen nämlich auch viele Startups in Gefahr, die auf einem gesunden, Startup-typischen Entwicklungspfad sind. Diese gelte es vor dem “Austrocknen” zu bewahren, meint Berthold Baurek-Karlic, CEO von Venionaire, denn sonst „kommen Heuschrecken aus China und den USA und investieren vor unserer Nase in Zukunftstechnologie und Talente, was sie mittelfristig abwandern lassen wird.“

Die Verwirrung mit den Garantien

In der Startup-Szene häufen sich nun Stimmen, die spezielle Maßnahmen für Startups fordern, da Garantien für Startups als Hilfsmaßnahme nicht immer geeignet sind.

Baurek-Karlic bringt es gegenüber dem brutkasten auf den Punkt: „Garantien für Kredite kommen kaum in Frage, da deren Rückzahlung oder Fälligkeit durch Banken toxisch wäre – die meisten Startups erfüllen außerdem gar nicht die Voraussetzungen für diese Garantien.“

Ähnlich sieht es Business Angel Hansi Hansmann, der bei der hohen Eigenkapitalquote von Garantien das Problem sieht: „Die meisten Maßnahmen sind für Startups nicht anwendbar. Wir brauchen Überbrückungskredite für Startups, die nicht von der Eigenkapitalquote abhängen.“

Auch Oliver Holle, CEO von Speedinvest, betont gegenüber dem brutkasten, dass es abseits der Maßnahmen für Kurzarbeit nun dringende Maßnahmen zur Zwischenkapitalisierung für österreichische Startups braucht. „Ich bin auch zuversichtlich, dass die Regierung hier noch Maßnahmen setzt, ähnlich wie das ja auch in Deutschland besprochen wird“, so Holle. Im besten Fall könne der Steuerzahler im Nachhinein auch verdienen, wie Holle später auf Twitter nochmals betonte. 


In Deutschland ist nämlich eine ähnliche Diskussion entbrannt und das Wirtschaftsministerium plant vermeintlich einen eigenen Rettungsschirm für Startups.

Instrumente auch für Startups gedacht

Wirtschaftsministerin Margarete Schramböck schätzt die Situation allerdings anders ein: „Bei uns ist die Situation anders als in Deutschland, da wir viele Instrumente bereits haben, die Startups nutzen können.“ Insbesondere die Überbrückungsgarantien seien auch für Startups gedacht.

Darüber hinaus gäbe es bereits Promessen, damit Startups leichter Kredite bei Banken bekommen, als auch zinsgünstige ERP Kleinkredite.

Auch die „Seed Programme bei aws und Startup Förderungen für Forschung bei FFG laufen normal weiter“, heißt es aus dem Wirtschaftsministerium.

Einen Dachfonds zur Hebelung von Private Equity schaue sich das Ministerium überdies gerade an.

URG – Kennzahlen als Knackpunkt für die Garantieübernahme 

Laut dem ECOVIS-Partner David Gloser sei eine Garantieübernahme grundsätzlich so wie Double Equity ein sehr geeignetes Instrument für Startups. Der Staat garantiert dabei der Bank die Rückzahlung in Höhe von 80 Prozent der Kreditsumme. Allerdings gibt es eine Voraussetzung, die für Startups problematisch sein könnte.

+++ Kurzarbeit, Kinderbetreuung und Liquidität in Zeiten des Coronavirus +++

„Die Garantieübernahme ist unter anderem dann ausgeschlossen, wenn  Unternehmen die im der Antragstellung vorausgegangenen Wirtschaftsjahr die sogenannte URG-Kriterien erfüllen. Das ist dann der Fall, wenn die Eigenmittelquote unter acht Prozent liegt und fiktive Schuldentilgungsdauer über 15 Jahre beträgt“, so Gloser.

In diesem Fall wird dann ein Reorganisationsbedarf vermutet und Garantieübernahme ausgeschlossen. Typischerweise wären das Startups in der Wachstumsphase, die vor der nächsten Finanzierungsrunde stehen, weil der letzte Eigenkapitalzuschuss verbraucht ist. Diese haben einen negativen Cashflow (Jahresverlust plus Abschreibung) und ein negatives Eigenkapital und würden laut Gloser somit keine Garantie bekommen.

Das könnte in der Tat viele Startups treffen. Hier wäre eine Lösung, die URG – Einschränkung für Startups auszunehmen. Dann würde der Staat wirtschaftlich de facto die Kreditgeber-Funktion übernehmen. 

Das Problem mit Double Equity

Ein weiteres Problem ergibt sich laut Andreas Nemeth, CEO von UNIQA Ventures, beim Finanzierungsinstrument Double Equity, da dieses an entsprechende Umsatzziele gebunden ist, die sich in der Coronakrise nicht mehr erfüllen lassen. In Zeiten in denen die Nachfrage in gewissen Sektoren beinahe auf Null geht, kann dies zu einem erheblichen Problem führen. 

„Mir berichten einige Startups, die Double Equity in Anspruch genommen haben und dementsprechende Umsatzziele erfüllen müssen, dass es durchaus eng werden kann“, so Nemeth. Hier würde eine Stundung der Double Equity Forderungen helfen. Die aws scheint hier aber verständnisvoll vorzugehen.

Das Problem mit der Finanzierungsphase

Ein weiteres Problem kann sich dadurch ergeben, in welcher Finanzierungsphase sich ein Startup derzeit befindet und ob ein Investment kurz vor dem Ausbruch der Coronakrise noch rechtzeitig geclosed werden konnte oder nicht.

Mic Hirschbrich, Gründer des Startups Apollo.ai / Updatemi, sieht hier folgende Problematik gegeben: „Perfiderweise kommen in einer solchen Krise mit externen Effekten, ausgerechnet jene Startups besonders ins Strudeln, die den Turnaround bereits geschafft haben, vielleicht gerade Breakeven sind und von Kunden leben anstatt von Investorengeldern. Ihnen brechen jetzt überlebenswichtige Umsätze weg.“

Im Gegensatz dazu, kommen Startups, die zwar noch nicht Breakeven sind, und gerade eine Finanzierungsrunde hinter sich haben, vergleichsweise gut davon. “Ihnen macht das Remote-Arbeiten meist nichts aus und sie können jetzt fokussiert ihre Produkte entwickeln. Andere wiederum, die gerade nicht mehr rechtzeitig closen konnten, für die braucht es jetzt Lösungen auf Augenhöhe, so Hirschbrich.

Steuerliche Absetzbarkeit als eine Lösung gegen ungewollte Marktbereinigung 

Der Staat könne hier private Hilfen steuerlich stützen bzw. befristet abschreibbar machen, dann wäre beiden Seiten geholfen, schlägt Hirschbrich vor. „Die Staatskasse wäre weniger stark belastet, Bestandsinvestoren hätten Anreize aufzustocken und dem Startup wäre wirklich geholfen.“ Dies würde nicht nur das Kapital privater Investoren mobilisieren, sondern auch jenen der KMU, Banken, Pensionskassen und anderer Konzerne, ergänzt Baurek-Karlic.

Die Krise komme für das „zarte Pflänzchen europäischer Innovationen“ höchst ungelegen. Denn solch brachialen Ereignisse wie eine Pandemie im Innovationsbereich treffen mitunter genau die falschen. „Und das ist eine ´Marktbereinigung´ die wirklich keiner will“, schließt Hirschbrich seine Ausführungen ab. 

Giftige Down-Rounds als Gefahr

Eine weitere Gefahr für Startups sind die sogenannte Down-Rounds, sprich Investitionsrunden zu einer niedrigeren Bewertung als die letzte. Der Gründer von wefox, Julian Teicke, forderte die Venture Capital Investoren auf seinem LinkedIn Profil auf, in diesen schwierigen Zeiten für gut laufende Startups, die derzeit am Funding sind, die Zitrone nicht zu sehr zu drücken.

„Die Down-Rounds seien in diesen Zeiten ein absolutes No-Go. Das ist die Grenze, die nicht überschritten werden sollte“, meinte Teicke. Er habe in den letzten Tagen von schrecklichem Verhalten von VCs auf der ganzen Welt gehört und fordert von diesen Anstand ein.

Auch Hirschbrich warnt vor dieser Gefahr. “Viele Startups, die unverschuldet nun ihre Bestandsinvestoren brauchen, sind zurecht nervös. In Fällen höherer Gewalt sollten aber aggressive Down-Round-Ambitionen hintenangehalten werden. Zu hoch wären die Schäden in der langfristigen Company-Reputation sowie bei der Gründer-Moral“, so Hirschbrich.

Rettungsschirm für Startups in der Coronakrise

Berthold Baurek-Karlic geht hier einen Schritt weiter und schlägt einen eigenen Rettungsschirm für Startups vor. „Jedes Startup das mehr als 500.000 Euro Förderungen oder Investment in seiner Laufbahn erhalten hat und weniger als zehn Jahre alt ist, soll 500.000 Euro als Substanzgenussrecht bekommen“. 

Die Konditionen könnten dabei die Verzinsung und den Wertzuwachs berücksichtigen, gebunden an die durchschnittliche Post-Money Bewertung der letzten zwölf Monate oder der letzten Finanzierungsrunde. Die Prüfung könnte im Eilverfahren durch aws oder FFG erfolgen.


Alle Informationen über aktuelle Hilfe für Unternehmen in der Coronakrise finden sich auf www.oesterreich.gv.at/

Redaktionstipps
Deine ungelesenen Artikel:
27.01.2025

Open Source und KI: „Es geht nicht darum, zu den Guten zu gehören“

Nachlese. Die Nutzung von Open-Source-Modellen eröffnet Unternehmen auch im KI-Bereich weitreichende Möglichkeiten. Es gibt dabei aber auch einiges zu bedenken. Darüber und mehr diskutierten in Folge 5 von "No Hype KI" Stephan Kraft von Red Hat, Florian Böttcher von CANCOM Austria, Natalie Ségur-Cabanac von Women in AI und Patrick Ratheiser von Leftshift.One.
/artikel/no-hype-ki-folge-5
27.01.2025

Open Source und KI: „Es geht nicht darum, zu den Guten zu gehören“

Nachlese. Die Nutzung von Open-Source-Modellen eröffnet Unternehmen auch im KI-Bereich weitreichende Möglichkeiten. Es gibt dabei aber auch einiges zu bedenken. Darüber und mehr diskutierten in Folge 5 von "No Hype KI" Stephan Kraft von Red Hat, Florian Böttcher von CANCOM Austria, Natalie Ségur-Cabanac von Women in AI und Patrick Ratheiser von Leftshift.One.
/artikel/no-hype-ki-folge-5

„No Hype KI“ wird unterstützt von CANCOM AustriaIBMITSVMicrosoftNagarroRed Hat und Universität Graz.

Kollaborativ, transparent, frei zugänglich und nicht profit-orientiert – mit Open-Source-Software wird eine Reihe von Eigenschaften assoziiert. Und oftmals stehen bei der Nutzung ethische Überlegungen im Zentrum. Dabei gibt es auch ganz praktische Gründe, die für eine Verwendung durch Unternehmen sprechen – auch bei der Implementierung von KI-Anwendungen, ist Stephan Kraft, Community Advocate & Business Development OpenShift & Application Services bei Red Hat, überzeugt. In Folge fünf der Serie „No Hype KI“ diskutierte er dieses und weitere Themen mit Florian Böttcher, Solution Architect bei CANCOM Austria, Natalie Ségur-Cabanac, Policy Lead bei Women in AI und Patrick Ratheiser, Gründer & CEO von Leftshift.One.

„Thema ein Stück weit aus dieser emotionalen, moralisierenden Ecke herausholen“

„Ich will das Thema ein Stück weit aus dieser emotionalen, moralisierenden Ecke herausholen“, sagt Stephan Kraft. Für Red Hat als weltweit führenden Anbieter für Open-Source-Lösungen für Unternehmen gehen die Argumente für eine Nutzung nämlich weit darüber hinaus. „Es geht nicht darum, Open Source als Selbstzweck zu sehen, um zu den Guten zu gehören“, so der Experte. Tatsächlich sei die Verwendung von Open Source gerade bei der Etablierung von KI im Unternehmen für Startups und KMU eine wichtige Weichenstellung.

Offenheit, um Diskriminierung entgegenzuwirken

Auch Natalie Ségur-Cabanac sieht Open Source als „Key Technology“ im KI-Bereich. Für „Women in AI“ spiele die Offenheit eine zentrale Rolle: „Diese Offenheit braucht es, um Diskriminierung entgegenzuwirken.“ Open Source verbessere den Zugang für Frauen zur Technologie, die Abbildung von Frauen in den Daten und es vergrößere die Möglichkeiten in der Forschung. Man müsse aber auch aufpassen, ob Software wirklich so offen sei, wie behauptet, sagt sie bezogen auf die aktuellen Diskussionen rund um OpenAI, das sich – ursprünglich als offenes Projekt gestartet – zum profitorientierten Unternehmen entwickelte. Es brauche auch eine klare Definition, was „open“ sei.

Masse an Möglichkeiten

Leftshift.One-Gründer Patrick Ratheiser betont auch die schiere Masse an Möglichkeiten, die Open Source bietet. „2021 hatten wir weltweit Zugriff auf circa 5.000 Open-Source-Modelle. Jetzt sind es bereits mehr als eine Million.“ Die Nutzbarkeit sei also klar gegeben, zudem biete die Technologie eine gewisse Unabhängigkeit und werde über ihre Vielfalt zum Innovationstreiber.

Ist Open Source immer die beste Lösung?

Doch bedeutet das, dass Open Source immer die optimale Lösung ist? Ratheiser sieht das differenziert: „Es ist ganz wichtig zu erkennen, was der Kunde braucht und was in dem Fall gerade notwendig ist. Egal, ob es nun On-Premise, in der Cloud, Open Source oder Closed Source ist.“ Florian Böttcher von CANCOM Austria pflichtet hier bei: „Wir setzen genau so auf hybrid.“

Datenstruktur im Hintergrund ist entscheidend

Ein Thema, bei dem bei Open Source Vorsicht geboten ist, spricht Natalie Ségur-Cabanac an. Besonders wichtig sei es bei KI-Anwendungen, eine gute Datenstruktur im Hintergrund zu haben. „Die Verantwortung, dass ein Modell mit sauberen Daten trainiert worden ist, liegt bei den Anbietern. Bei Open Source verschwimmt das ein bisschen. Wer ist wofür zuständig? Das ist eine Herausforderung für die Compliance zu schauen, wo man selbst verantwortlich ist und wo man sich auf einen Anbieter verlassen kann.“

Compliance: Großes Thema – mehr Sichereheit mit professioneller Unterstützung

Stephan Kraft hakt hier ein. Genau aus solchen Gründen gebe es Unternehmen wie Red Hat, die mit ihrem Enterprise-Support für Open-Source-Lösungen die Qualitätssicherung auch im rechtlichen Bereich übernehmen. „Das ist ein ganz wichtiger Teil unseres Versprechens gegenüber Kunden“, so Kraft. Unbedacht im Unternehmen mit Open Source zu arbeiten, könne dagegen in „Compliance-Fallen“ führen, pflichtet er Ségur-Cabanac bei.

Das sieht auch Patrick Ratheiser als Thema bei Leftshift.One: „Unsere Lösung ist Closed Source, wir setzen aber im Hintergrund Open Source ein. Wichtig ist, dass wir dem Kunden Compliance garantieren können.“ Stephan Kraft empfiehlt Unternehmen bei der Open-Source-Nutzung: „Man kann nicht immer gleich die neueste ‚bleeding edge‘-Lösung nehmen sondern sollte etwas konservativer herangehen.“

Infrastruktur: Gut planen, was man wirklich braucht

Unabhängig davon, ob man nun Open Source oder Closed Source nutzt, braucht es für die Nutzung von KI die richtige Infrastruktur. „Es kommt natürlich auf den Use Case an, den ein Unternehmen umsetzen will. Da sind die Anforderungen an die Infrastruktur sehr unterschiedlich“, grenzt Florian Böttcher ein. CANCOM Austria unterstützt seine Kunden in genau der Frage. Anwendungen wie das Training von KI-Modellen würde aus gutem Grund kaum in Österreich umgesetzt. „KI ist sehr stromhungrig und entwickelt viel Hitze. Das ist schwierig für ein eigenes Data-Center im Unternehmen, gerade wenn man die Strompreise in Österreich ansieht“, so Böttcher.

„Rechenleistungs-Hunger“ von KI könnte sich in Zukunft verringern

Wichtig sei es letztlich, sich als Unternehmen sehr klar darüber zu sein, was man umsetzen wolle. „Danach, welche Software-Lösung man für seinen Use Case einsetzen muss, richtet sich auch die Infrastruktur“, so Böttcher. Er erwarte aber auch, dass die KI-Modelle im nächsten Entwicklungsschritt effizienter werden und der „Rechenleistungs-Hunger“ sich verringere.

Patrick Ratheiser ergänzt: „Es ist grundsätzlich eine Kostenfrage.“ Unternehmen müssten sich sehr gut überlegen, ob sie ein eigenes LLM (Large Language Model) betreiben und dieses sogar selbst trainieren wollen, oder lieber doch eine Usage-basierte Lösung wählen. Er sehe bei österreichischen Unternehmen – auch bei größeren – eine klare Tendenz zur zweiten Variante. „Es lässt sich deutlich schneller einrichten, ist kalkulierbarer und auch viel schneller skalierbar“, erklärt Ratheiser.

Etwa im Forschungsbereich sei es jedoch wichtig und notwendig, auch eigene LLMs und die damit verbundene Infrastruktur zu betreiben. Doch auch die Möglichkeit von hybriden Lösungen biete sich an. „Man kann mittlerweile auch Teile in der Cloud lassen und Teile On-Premise. Man kann etwa nur ein datenschutzsicheres LLM selbst betreiben“, erklärt der Experte, der auch bei der Wahl der genutzten Modelle einen hybriden Ansatz empfiehlt: „Man braucht nicht für alle Use Cases das neueste Modell. Manchmal braucht man überhaupt kein LLM.“

Datenschutz: Einige Herausforderungen bei LLMs

Stichwort: Datenschutz. Hier schafft die europäische Datenschutzgrundverordnung (DSGVO) im KI-Bereich besondere Herausforderungen, weiß Natalie Ségur-Cabanac, die vorab betont: „Ich persönlich halte die DSGVO für ein gutes Regulierungswerk, weil sie sehr viel Spielraum gibt. Ich sage immer: Datenschutz ist sehr komplex, aber nicht kompliziert.“ Konkret seien etwa der Grundsatz der Zweckbezogenheit, also dass man Daten nur für konkrete Zwecke einsetzen darf, und dass man sie minimierend einsetzen muss, relevant für den KI-Bereich. „Da haben wir schon einen Konflikt, weil man ja [bei LLMs] erst einmal schaut, was man aus möglichst vielen Daten machen kann“, so die Expertin.

Ist KI rechtlich innerhalb der EU sogar per se in einem Graubereich?

Auch Transparenzbestimmungen – sowohl in der DSGVO als auch im AI-Act der EU – seien zu beachten. „Wenn ich KI verwende, muss ich auch wissen, was drinnen ist“, fasst Ségur-Cabanac zusammen. Ist KI also rechtlich innerhalb der EU sogar per se in einem Graubereich? „Nein, das glaube ich nicht. Aber man muss seine Hausaufgaben schon gut machen“, sagt die Expertin. Wichtig sei daher auch die im Rahmen des EU-AI-Acts eingeforderte KI-Kompetenz in Unternehmen – im technischen und rechtlichen Bereich.

KI-Kompetenz als zentrales Thema

Patrick Ratheiser stimmt zu: „Neben der Technologie selber sind bei unseren Kunden die Mitarbeiter ein Riesen-Thema. Man muss sie nicht nur wegen dem AI-Act fit bekommen, sondern es geht darum, sie wirklich auf die Anwendungen einzuschulen.“ Wichtig seien dabei auch die Kolleg:innen, die sich bereits mit dem Thema auskennen – die „Pioniere“ im Unternehmen. „AI Literacy ist sicherlich das Thema 2025 und in nächster Zeit. So, wie wir gelernt haben, mit dem Smartphone umzugehen, werden wir es auch mit generativer KI lernen“, so Ratheiser.

„Einfach einmal ausprobieren“

Stephan Kraft ergänzt: Neben einer soliden Datenbasis und der notwendigen Kompetenz brauche es bei KI – gerade auch im Bereich Open Source – noch etwas: „Einfach einmal ausprobieren. Es braucht auch Trial and Error. Das ist vielleicht oft das Schwierigste für CFOs und Geschäftsführer.“ Dieses Ausprobieren sollte aber innerhalb eines festgelegten Rahmens passieren, damit die KI-Implementierung gelingt, meint Natalie Ségur-Cabanac: „Unternehmen brauchen eine KI-Strategie und müssen wissen, was sie mit der Technologie erreichen wollen.“ Auch sich mit den zuvor angesprochenen rechtlichen Anforderungen – Stichwort Compliance – zu beschäftigen, komme zeitlich erst nach der Festlegung der Strategie.


Die gesamte Folge ansehen:

Die Nachlesen der bisherigen Folgen:

Folge 1: “No Hype KI – wo stehen wir nach zwei Jahren ChatGPT?

Folge 2: “Was kann KI in Gesundheit, Bildung und im öffentlichen Sektor leisten?

Folge 3: “Der größte Feind ist Zettel und Bleistift”: Erfolgsfaktoren und Herausforderungen in der KI-Praxis”

Folge 4: KI-Geschäftsmodelle: “Wir nutzen nur einen Bruchteil dessen, was möglich ist”


Die Serie wird von brutkasten in redaktioneller Unabhängigkeit mit finanzieller Unterstützung unserer Partner:innen produziert.

No Hype KI
27.01.2025

Open Source und KI: „Es geht nicht darum, zu den Guten zu gehören“

Nachlese. Die Nutzung von Open-Source-Modellen eröffnet Unternehmen auch im KI-Bereich weitreichende Möglichkeiten. Es gibt dabei aber auch einiges zu bedenken. Darüber und mehr diskutierten in Folge 5 von "No Hype KI" Stephan Kraft von Red Hat, Florian Böttcher von CANCOM Austria, Natalie Ségur-Cabanac von Women in AI und Patrick Ratheiser von Leftshift.One.
27.01.2025

Open Source und KI: „Es geht nicht darum, zu den Guten zu gehören“

Nachlese. Die Nutzung von Open-Source-Modellen eröffnet Unternehmen auch im KI-Bereich weitreichende Möglichkeiten. Es gibt dabei aber auch einiges zu bedenken. Darüber und mehr diskutierten in Folge 5 von "No Hype KI" Stephan Kraft von Red Hat, Florian Böttcher von CANCOM Austria, Natalie Ségur-Cabanac von Women in AI und Patrick Ratheiser von Leftshift.One.

„No Hype KI“ wird unterstützt von CANCOM AustriaIBMITSVMicrosoftNagarroRed Hat und Universität Graz.

Kollaborativ, transparent, frei zugänglich und nicht profit-orientiert – mit Open-Source-Software wird eine Reihe von Eigenschaften assoziiert. Und oftmals stehen bei der Nutzung ethische Überlegungen im Zentrum. Dabei gibt es auch ganz praktische Gründe, die für eine Verwendung durch Unternehmen sprechen – auch bei der Implementierung von KI-Anwendungen, ist Stephan Kraft, Community Advocate & Business Development OpenShift & Application Services bei Red Hat, überzeugt. In Folge fünf der Serie „No Hype KI“ diskutierte er dieses und weitere Themen mit Florian Böttcher, Solution Architect bei CANCOM Austria, Natalie Ségur-Cabanac, Policy Lead bei Women in AI und Patrick Ratheiser, Gründer & CEO von Leftshift.One.

„Thema ein Stück weit aus dieser emotionalen, moralisierenden Ecke herausholen“

„Ich will das Thema ein Stück weit aus dieser emotionalen, moralisierenden Ecke herausholen“, sagt Stephan Kraft. Für Red Hat als weltweit führenden Anbieter für Open-Source-Lösungen für Unternehmen gehen die Argumente für eine Nutzung nämlich weit darüber hinaus. „Es geht nicht darum, Open Source als Selbstzweck zu sehen, um zu den Guten zu gehören“, so der Experte. Tatsächlich sei die Verwendung von Open Source gerade bei der Etablierung von KI im Unternehmen für Startups und KMU eine wichtige Weichenstellung.

Offenheit, um Diskriminierung entgegenzuwirken

Auch Natalie Ségur-Cabanac sieht Open Source als „Key Technology“ im KI-Bereich. Für „Women in AI“ spiele die Offenheit eine zentrale Rolle: „Diese Offenheit braucht es, um Diskriminierung entgegenzuwirken.“ Open Source verbessere den Zugang für Frauen zur Technologie, die Abbildung von Frauen in den Daten und es vergrößere die Möglichkeiten in der Forschung. Man müsse aber auch aufpassen, ob Software wirklich so offen sei, wie behauptet, sagt sie bezogen auf die aktuellen Diskussionen rund um OpenAI, das sich – ursprünglich als offenes Projekt gestartet – zum profitorientierten Unternehmen entwickelte. Es brauche auch eine klare Definition, was „open“ sei.

Masse an Möglichkeiten

Leftshift.One-Gründer Patrick Ratheiser betont auch die schiere Masse an Möglichkeiten, die Open Source bietet. „2021 hatten wir weltweit Zugriff auf circa 5.000 Open-Source-Modelle. Jetzt sind es bereits mehr als eine Million.“ Die Nutzbarkeit sei also klar gegeben, zudem biete die Technologie eine gewisse Unabhängigkeit und werde über ihre Vielfalt zum Innovationstreiber.

Ist Open Source immer die beste Lösung?

Doch bedeutet das, dass Open Source immer die optimale Lösung ist? Ratheiser sieht das differenziert: „Es ist ganz wichtig zu erkennen, was der Kunde braucht und was in dem Fall gerade notwendig ist. Egal, ob es nun On-Premise, in der Cloud, Open Source oder Closed Source ist.“ Florian Böttcher von CANCOM Austria pflichtet hier bei: „Wir setzen genau so auf hybrid.“

Datenstruktur im Hintergrund ist entscheidend

Ein Thema, bei dem bei Open Source Vorsicht geboten ist, spricht Natalie Ségur-Cabanac an. Besonders wichtig sei es bei KI-Anwendungen, eine gute Datenstruktur im Hintergrund zu haben. „Die Verantwortung, dass ein Modell mit sauberen Daten trainiert worden ist, liegt bei den Anbietern. Bei Open Source verschwimmt das ein bisschen. Wer ist wofür zuständig? Das ist eine Herausforderung für die Compliance zu schauen, wo man selbst verantwortlich ist und wo man sich auf einen Anbieter verlassen kann.“

Compliance: Großes Thema – mehr Sichereheit mit professioneller Unterstützung

Stephan Kraft hakt hier ein. Genau aus solchen Gründen gebe es Unternehmen wie Red Hat, die mit ihrem Enterprise-Support für Open-Source-Lösungen die Qualitätssicherung auch im rechtlichen Bereich übernehmen. „Das ist ein ganz wichtiger Teil unseres Versprechens gegenüber Kunden“, so Kraft. Unbedacht im Unternehmen mit Open Source zu arbeiten, könne dagegen in „Compliance-Fallen“ führen, pflichtet er Ségur-Cabanac bei.

Das sieht auch Patrick Ratheiser als Thema bei Leftshift.One: „Unsere Lösung ist Closed Source, wir setzen aber im Hintergrund Open Source ein. Wichtig ist, dass wir dem Kunden Compliance garantieren können.“ Stephan Kraft empfiehlt Unternehmen bei der Open-Source-Nutzung: „Man kann nicht immer gleich die neueste ‚bleeding edge‘-Lösung nehmen sondern sollte etwas konservativer herangehen.“

Infrastruktur: Gut planen, was man wirklich braucht

Unabhängig davon, ob man nun Open Source oder Closed Source nutzt, braucht es für die Nutzung von KI die richtige Infrastruktur. „Es kommt natürlich auf den Use Case an, den ein Unternehmen umsetzen will. Da sind die Anforderungen an die Infrastruktur sehr unterschiedlich“, grenzt Florian Böttcher ein. CANCOM Austria unterstützt seine Kunden in genau der Frage. Anwendungen wie das Training von KI-Modellen würde aus gutem Grund kaum in Österreich umgesetzt. „KI ist sehr stromhungrig und entwickelt viel Hitze. Das ist schwierig für ein eigenes Data-Center im Unternehmen, gerade wenn man die Strompreise in Österreich ansieht“, so Böttcher.

„Rechenleistungs-Hunger“ von KI könnte sich in Zukunft verringern

Wichtig sei es letztlich, sich als Unternehmen sehr klar darüber zu sein, was man umsetzen wolle. „Danach, welche Software-Lösung man für seinen Use Case einsetzen muss, richtet sich auch die Infrastruktur“, so Böttcher. Er erwarte aber auch, dass die KI-Modelle im nächsten Entwicklungsschritt effizienter werden und der „Rechenleistungs-Hunger“ sich verringere.

Patrick Ratheiser ergänzt: „Es ist grundsätzlich eine Kostenfrage.“ Unternehmen müssten sich sehr gut überlegen, ob sie ein eigenes LLM (Large Language Model) betreiben und dieses sogar selbst trainieren wollen, oder lieber doch eine Usage-basierte Lösung wählen. Er sehe bei österreichischen Unternehmen – auch bei größeren – eine klare Tendenz zur zweiten Variante. „Es lässt sich deutlich schneller einrichten, ist kalkulierbarer und auch viel schneller skalierbar“, erklärt Ratheiser.

Etwa im Forschungsbereich sei es jedoch wichtig und notwendig, auch eigene LLMs und die damit verbundene Infrastruktur zu betreiben. Doch auch die Möglichkeit von hybriden Lösungen biete sich an. „Man kann mittlerweile auch Teile in der Cloud lassen und Teile On-Premise. Man kann etwa nur ein datenschutzsicheres LLM selbst betreiben“, erklärt der Experte, der auch bei der Wahl der genutzten Modelle einen hybriden Ansatz empfiehlt: „Man braucht nicht für alle Use Cases das neueste Modell. Manchmal braucht man überhaupt kein LLM.“

Datenschutz: Einige Herausforderungen bei LLMs

Stichwort: Datenschutz. Hier schafft die europäische Datenschutzgrundverordnung (DSGVO) im KI-Bereich besondere Herausforderungen, weiß Natalie Ségur-Cabanac, die vorab betont: „Ich persönlich halte die DSGVO für ein gutes Regulierungswerk, weil sie sehr viel Spielraum gibt. Ich sage immer: Datenschutz ist sehr komplex, aber nicht kompliziert.“ Konkret seien etwa der Grundsatz der Zweckbezogenheit, also dass man Daten nur für konkrete Zwecke einsetzen darf, und dass man sie minimierend einsetzen muss, relevant für den KI-Bereich. „Da haben wir schon einen Konflikt, weil man ja [bei LLMs] erst einmal schaut, was man aus möglichst vielen Daten machen kann“, so die Expertin.

Ist KI rechtlich innerhalb der EU sogar per se in einem Graubereich?

Auch Transparenzbestimmungen – sowohl in der DSGVO als auch im AI-Act der EU – seien zu beachten. „Wenn ich KI verwende, muss ich auch wissen, was drinnen ist“, fasst Ségur-Cabanac zusammen. Ist KI also rechtlich innerhalb der EU sogar per se in einem Graubereich? „Nein, das glaube ich nicht. Aber man muss seine Hausaufgaben schon gut machen“, sagt die Expertin. Wichtig sei daher auch die im Rahmen des EU-AI-Acts eingeforderte KI-Kompetenz in Unternehmen – im technischen und rechtlichen Bereich.

KI-Kompetenz als zentrales Thema

Patrick Ratheiser stimmt zu: „Neben der Technologie selber sind bei unseren Kunden die Mitarbeiter ein Riesen-Thema. Man muss sie nicht nur wegen dem AI-Act fit bekommen, sondern es geht darum, sie wirklich auf die Anwendungen einzuschulen.“ Wichtig seien dabei auch die Kolleg:innen, die sich bereits mit dem Thema auskennen – die „Pioniere“ im Unternehmen. „AI Literacy ist sicherlich das Thema 2025 und in nächster Zeit. So, wie wir gelernt haben, mit dem Smartphone umzugehen, werden wir es auch mit generativer KI lernen“, so Ratheiser.

„Einfach einmal ausprobieren“

Stephan Kraft ergänzt: Neben einer soliden Datenbasis und der notwendigen Kompetenz brauche es bei KI – gerade auch im Bereich Open Source – noch etwas: „Einfach einmal ausprobieren. Es braucht auch Trial and Error. Das ist vielleicht oft das Schwierigste für CFOs und Geschäftsführer.“ Dieses Ausprobieren sollte aber innerhalb eines festgelegten Rahmens passieren, damit die KI-Implementierung gelingt, meint Natalie Ségur-Cabanac: „Unternehmen brauchen eine KI-Strategie und müssen wissen, was sie mit der Technologie erreichen wollen.“ Auch sich mit den zuvor angesprochenen rechtlichen Anforderungen – Stichwort Compliance – zu beschäftigen, komme zeitlich erst nach der Festlegung der Strategie.


Die gesamte Folge ansehen:

Die Nachlesen der bisherigen Folgen:

Folge 1: “No Hype KI – wo stehen wir nach zwei Jahren ChatGPT?

Folge 2: “Was kann KI in Gesundheit, Bildung und im öffentlichen Sektor leisten?

Folge 3: “Der größte Feind ist Zettel und Bleistift”: Erfolgsfaktoren und Herausforderungen in der KI-Praxis”

Folge 4: KI-Geschäftsmodelle: “Wir nutzen nur einen Bruchteil dessen, was möglich ist”


Die Serie wird von brutkasten in redaktioneller Unabhängigkeit mit finanzieller Unterstützung unserer Partner:innen produziert.

No Hype KI
Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag