Kryptowährungen: Spekulationsblase oder die Revolution der Finanzwelt?
Bitcoin als Kryptowährung macht immer wieder negativen Schlagzeilen, nachdem die Angreifer hinter der WannaCry-Ransomware ebenfalls nach diesem Zahlungsmittel verlangt hatten. Aber sind diese und andere
Kryptowährungen wirklich so schlecht wie ihr Ruf, woher kommen sie überhaupt und wie funktionieren sie? Ein Gastbeitrag von Christos Kapodistrias.
Als Beispiel für dieses Thema wird häufig Bitcoin verwendet, da es die mit Abstand bekannteste digitale Währung ist (die gelegentlich sogar in den Nachrichten in TV, Radio und Internet erwähnt wird). Tatsächlich gibt es jedoch Dutzende dieser Währungen, die einen mehr oder weniger hohen Gegenwert in „echtem“ Geld haben.
Kryptowährungen wie Bitcoin, Litecoin, Dogecoin, Ethereum und viele weitere sind am Computer berechnete Währungen. Um dieses virtuelle Geld aufzubewahren, laden sich Interessenten (kostenfreie) Programme herunter, die eine sogenannte Wallet (ein digitales Portemonnaie) erstellen. Auf dieselbe Weise wie im echten Leben können Sie damit Geld ausgeben: indem Sie Geld aus Ihrer Wallet an eine andere Person oder ein Unternehmen überweisen. Das dauert nur wenige Sekunden und ist auch für Einsteiger praktisch sofort nachvollziehbar.
Dass eine Kryptowährung überhaupt einen echten Gegenwert haben kann, liegt an der begrenzten Verfügbarkeit: Bitcoins beispielsweise sind auf 21 Millionen Stück begrenzt, mehr wird es nicht geben. Entsprechend handelt es sich um ein seltenes – wenn auch digitales – Gut, für das Menschen einen Gegenwert bezahlen würden. Ganz ähnlich ist es mit Gold: Im Prinzip handelt es sich nur um ein wertloses Mineral, das erst dann wertvoll wird, weil Menschen ihm einen Wert beimessen und es auf der Erde nur in begrenzten Mengen verfügbar ist.
Was unterscheidet Kryptowährungen?
Zwei wesentliche Unterschiede liegen in der Natur dieser Währungsart:
Es gibt kein großes Bankhaus oder Kreditkarteninstitute, die Ihr Geld verwalten. Das gesamte Bitcoin-Netzwerk wird nicht von einer Person oder einem Unternehmen gesteuert, sondern von allen Computern, die im Augenblick damit verbunden sind. Strukturell ähnelt die Verwaltung dieser Währung daher eher dem Internet an sich – mit zahlreichen, auf der ganzen Welt verteilten Server – als klassischen Zahlungsdienstleistern. Selbst der Erfinder der Bitcoins (dazu später mehr) hat keinen Einfluss auf „seine“ Währung.
Aufgrund dieser Tatsache gibt es keine übergreifende Organisation – ein Unternehmen oder eine Regierung –, die Einfluss auf die Währung oder das Netzwerk hat. Entsprechend ist auch die Identität der Nutzer völlig geheim. Bei Überweisungen geben Sie nicht den Namen und die IBAN ein, wie bei klassischen Transaktionen über Ihre Bank (wodurch Sie sofort zu identifizieren wären), sondern nur eine recht lange Kombination aus Zahlen und Buchstaben. In welcher Wallet das Geld am Ende landet, bleibt also geheim, wenn dies gewünscht ist.Nutzer von Kryptowährungen wahren also ihre Anonymität und sind nicht von eventueller Willkür von Regierungen und Finanzinstitutionen abhängig. Gerade in eher repressiv geführten Staaten, in denen politische Verfolgung an der Tagesordnung steht, kann dies (ähnlich wie verschlüsselte Nachrichtendienste) enorm hilfreich sein.
Wie entstehen Kryptowährungen?
Die rohen Daten an sich, um etwa eine Bitcoin zu generieren, kommen durch Rechenarbeit am Computer zustande. Durch Mining-Software könnten auch Sie sich gleich jetzt Bitcoins am Computer generieren – was extrem langsam ist. Größere Mining-Farmen generieren Kryptowährungen mit spezieller Hardware, die ausschließlich für diesen Einsatzzweck hergestellt wird. In Deutschland findet dies praktisch nicht statt, es würde sich nur dann lohnen, wenn der Miner kostenlos an Strom kommen würde.
Die Technik dahinter wird von einzelnen oder mehreren Personen programmiert. Im Fall der Bitcoin war es jemand (oder ein Team) oder dem Namen Satoshi Nakamoto, ein japanisch klingender Name, der jedoch nicht echt ist. 2009 stellte er die Bitcoin-Software und das Netzwerk dahinter zur Verfügung, die Identität dieser Person oder Gruppe ist bis heute nicht geklärt. Man geht davon aus, dass sich etwa 1 Million Bitcoins in seinem Besitz befinden,was nach dem heutigen Wechselkurs etwa 2,2 Milliarden US-Dollar sind.
Ja. Gerade die Bitcoin wirkt für den Laien etwas „dubios“, da sie in den Nachrichten praktisch nur dann erwähnt wird, wenn etwas Kriminelles über die Bühne geht. Einkäufe von Drogen und Waffen, Erpressungsversuche und dergleichen mehr diktieren die Nachrichten. Illegal wird die Nutzung der Kryptowährungen aber erst, wenn Sie sie auch für illegale Zwecke einsetzen. Ein guter Vergleich ist ein Küchenmesser: Eigentlich sollen Sie damit Gemüse und Obst schneiden, aber es ließe sich auch für ganz andere Zwecke einsetzen. Nicht das Werkzeug entscheidet über Legalität oder Illegalität, sondern seine Nutzung.
Wie kaufe ich eine Kryptowährung?
Vor vielen Jahren war es noch möglich, etwa Bitcoins einfach am Computer zu berechnen. Das Geld floss dann sozusagen aus der Steckdose, wenngleich sie damals noch einen wesentlich geringeren Wert hatten (selbst Hunderte dieser digitalen Münzen reichten nur aus, um sich eine Pizza zu kaufen). Heute ist dies nicht mehr möglich: Der Rechenaufwand, um Bitcoins zu generieren, ist inzwischen so hoch, dass der Gewinn die Stromkosten nicht mehr deckt (zumindest in den meisten Europäischen Staaten). Ergo ist es heute sinnvoller, eine Kryptowährung einfach zu kaufen. Das funktioniert über Börsen im Internet, von denen es auch im deutschsprachigen Markt gleich mehrere gibt. Dort sehen Interessenten den aktuellen Kurs sowie dessen Entwicklung, außerdem können die Coins dort sowohl gekauft als auch verkauft werden. Üblicherweise berechnen die Börsen dafür eine kleine Gebühr, um ihren Dienst zu finanzieren. Wer hier genau von wem kauft, bleibt natürlich ebenfalls anonym. Der richtige Zeitpunkt für einen Kauf ist natürlich schwer abschätzbar: Die alte Faustregel „Kaufen, wenn der Kurs unten ist, verkaufen, wenn er oben ist“ gilt jedoch in der Regel genauso wie etwa beim Aktienhandel.
Ist das wirklich völlig anonym?
Die Transaktionen, die über Kryptowährungen durchgeführt werden, landen in der Blockchain. Sie können sich dies als eine Art globalen Index vorstellen, durch den Überweisungen von und zu Ihrer Wallet überhaupt erst möglich sind. Die Blockchain ist gelegentlich ausreichend, um die Identität einer Person zu ermitteln, aber dafür müssen reale Daten in irgendeiner Art mit der
persönlichen Wallet-Adresse verknüpft sein. Ist das nicht der Fall – was in 99,9 % der Fälle so sein dürfte –, ist es nicht möglich, die Identität hinter einer bestimmten Wallet herauszubekommen.
Die Strafverfolgung müsste also hoffen, dass Kriminelle beim Umtausch von Kryptowährung in echtes Geld einen Fehler machen und einen echten Namen angeben. Für legale Zwecke – für die Kryptowährungen eigentlich geschaffen wurden – ist die Anonymität jedoch gewahrt.
Wie steht es um die Preise von Bitcoin, Ethereum & Co.?
Ähnlich wie etwa der Goldpreis schwankt der Wert einer Bitcoin und auch vielen anderen Kryptowährungen stark. Derzeit (Stand: Ende Mai 2017) liegt der Preis für eine BTC (die Abkürzung für Bitcoin) bei etwa 2.050 Euro. Im Januar 2014 waren es noch etwa 550 Euro, vor drei Monaten betrug der Wert noch 1.000 Euro. Langfristig zeigt die Kurve zwar nach oben, heftige Schwankungen gehören jedoch einfach dazu. Deutlich weniger weit in die Vergangenheit gucken müssen wir bei Ethereum, einer anderen Kryptowährung als Bitcoin (die daher im Fachjargon auch Alt-Coin im Sinne von „alternativer Währung“ genannt wird): Derzeit beträgt der Wert 166 Euro, vor genau einem Monat waren es noch 46 Euro. Wer hier rechtzeitig gekauft hat, kann also einen ansehnlichen Gewinn verbuchen. Allerdings ist nicht gesagt, dass sich diese sagenhaften Kursentwicklungen langfristig halten. Die einen sprechen von einer Blase, die zu platzen droht, andere prognostizieren den Kryptowährungen einen anhaltenden Erfolg.
Über den Autor
Christos Kapodistrias ist Unternehmer, co founder & cto der Investmentpunk Academy und hilft klassischen Unternehmen bei den Hürden der Digitalisierung. Mit seinem neuen Portal dem Cryptohub.cc möchte er eine freie Community schaffen zum Informationsaustausch über Kryptowährungen.
Open Source und KI: “Es geht nicht darum, zu den Guten zu gehören”
Nachlese. Die Nutzung von Open-Source-Modellen eröffnet Unternehmen auch im KI-Bereich weitreichende Möglichkeiten. Es gibt dabei aber auch einiges zu bedenken. Darüber und mehr diskutierten in Folge 5 von "No Hype KI" Stephan Kraft von Red Hat, Florian Böttcher von CANCOM Austria, Natalie Ségur-Cabanac von Women in AI und Patrick Ratheiser von Leftshift.One.
Open Source und KI: “Es geht nicht darum, zu den Guten zu gehören”
Nachlese. Die Nutzung von Open-Source-Modellen eröffnet Unternehmen auch im KI-Bereich weitreichende Möglichkeiten. Es gibt dabei aber auch einiges zu bedenken. Darüber und mehr diskutierten in Folge 5 von "No Hype KI" Stephan Kraft von Red Hat, Florian Böttcher von CANCOM Austria, Natalie Ségur-Cabanac von Women in AI und Patrick Ratheiser von Leftshift.One.
Kollaborativ, transparent, frei zugänglich und nicht profit-orientiert – mit Open-Source-Software wird eine Reihe von Eigenschaften assoziiert. Und oftmals stehen bei der Nutzung ethische Überlegungen im Zentrum. Dabei gibt es auch ganz praktische Gründe, die für eine Verwendung durch Unternehmen sprechen – auch bei der Implementierung von KI-Anwendungen, ist Stephan Kraft, Community Advocate & Business Development OpenShift & Application Services bei Red Hat, überzeugt. In Folge fünf der Serie “No Hype KI” diskutierte er dieses und weitere Themen mit Florian Böttcher, Solution Architect bei CANCOM Austria, Natalie Ségur-Cabanac, Policy Lead bei Women in AI und Patrick Ratheiser, Gründer & CEO von Leftshift.One.
“Thema ein Stück weit aus dieser emotionalen, moralisierenden Ecke herausholen”
“Ich will das Thema ein Stück weit aus dieser emotionalen, moralisierenden Ecke herausholen”, sagt Stephan Kraft. Für Red Hat als weltweit führenden Anbieter für Open-Source-Lösungen für Unternehmen gehen die Argumente für eine Nutzung nämlich weit darüber hinaus. “Es geht nicht darum, Open Source als Selbstzweck zu sehen, um zu den Guten zu gehören”, so der Experte. Tatsächlich sei die Verwendung von Open Source gerade bei der Etablierung von KI im Unternehmen für Startups und KMU eine wichtige Weichenstellung.
Offenheit, um Diskriminierung entgegenzuwirken
Auch Natalie Ségur-Cabanac sieht Open Source als “Key Technology” im KI-Bereich. Für “Women in AI” spiele die Offenheit eine zentrale Rolle: “Diese Offenheit braucht es, um Diskriminierung entgegenzuwirken.” Open Source verbessere den Zugang für Frauen zur Technologie, die Abbildung von Frauen in den Daten und es vergrößere die Möglichkeiten in der Forschung. Man müsse aber auch aufpassen, ob Software wirklich so offen sei, wie behauptet, sagt sie bezogen auf die aktuellen Diskussionen rund um OpenAI, das sich – ursprünglich als offenes Projekt gestartet – zum profitorientierten Unternehmen entwickelte. Es brauche auch eine klare Definition, was “open” sei.
Masse an Möglichkeiten
Leftshift.One-Gründer Patrick Ratheiser betont auch die schiere Masse an Möglichkeiten, die Open Source bietet. “2021 hatten wir weltweit Zugriff auf circa 5.000 Open-Source-Modelle. Jetzt sind es bereits mehr als eine Million.” Die Nutzbarkeit sei also klar gegeben, zudem biete die Technologie eine gewisse Unabhängigkeit und werde über ihre Vielfalt zum Innovationstreiber.
Ist Open Source immer die beste Lösung?
Doch bedeutet das, dass Open Source immer die optimale Lösung ist? Ratheiser sieht das differenziert: “Es ist ganz wichtig zu erkennen, was der Kunde braucht und was in dem Fall gerade notwendig ist. Egal, ob es nun On-Premise, in der Cloud, Open Source oder Closed Source ist.” Florian Böttcher von CANCOM Austria pflichtet hier bei: “Wir setzen genau so auf hybrid.”
Datenstruktur im Hintergrund ist entscheidend
Ein Thema, bei dem bei Open Source Vorsicht geboten ist, spricht Natalie Ségur-Cabanac an. Besonders wichtig sei es bei KI-Anwendungen, eine gute Datenstruktur im Hintergrund zu haben. “Die Verantwortung, dass ein Modell mit sauberen Daten trainiert worden ist, liegt bei den Anbietern. Bei Open Source verschwimmt das ein bisschen. Wer ist wofür zuständig? Das ist eine Herausforderung für die Compliance zu schauen, wo man selbst verantwortlich ist und wo man sich auf einen Anbieter verlassen kann.”
Compliance: Großes Thema – mehr Sichereheit mit professioneller Unterstützung
Stephan Kraft hakt hier ein. Genau aus solchen Gründen gebe es Unternehmen wie Red Hat, die mit ihrem Enterprise-Support für Open-Source-Lösungen die Qualitätssicherung auch im rechtlichen Bereich übernehmen. “Das ist ein ganz wichtiger Teil unseres Versprechens gegenüber Kunden”, so Kraft. Unbedacht im Unternehmen mit Open Source zu arbeiten, könne dagegen in “Compliance-Fallen” führen, pflichtet er Ségur-Cabanac bei.
Das sieht auch Patrick Ratheiser als Thema bei Leftshift.One: “Unsere Lösung ist Closed Source, wir setzen aber im Hintergrund Open Source ein. Wichtig ist, dass wir dem Kunden Compliance garantieren können.” Stephan Kraft empfiehlt Unternehmen bei der Open-Source-Nutzung: “Man kann nicht immer gleich die neueste ‘bleeding edge’-Lösung nehmen sondern sollte etwas konservativer herangehen.”
Infrastruktur: Gut planen, was man wirklich braucht
Unabhängig davon, ob man nun Open Source oder Closed Source nutzt, braucht es für die Nutzung von KI die richtige Infrastruktur. “Es kommt natürlich auf den Use Case an, den ein Unternehmen umsetzen will. Da sind die Anforderungen an die Infrastruktur sehr unterschiedlich”, grenzt Florian Böttcher ein. CANCOM Austria unterstützt seine Kunden in genau der Frage. Anwendungen wie das Training von KI-Modellen würde aus gutem Grund kaum in Österreich umgesetzt. “KI ist sehr stromhungrig und entwickelt viel Hitze. Das ist schwierig für ein eigenes Data-Center im Unternehmen, gerade wenn man die Strompreise in Österreich ansieht”, so Böttcher.
“Rechenleistungs-Hunger” von KI könnte sich in Zukunft verringern
Wichtig sei es letztlich, sich als Unternehmen sehr klar darüber zu sein, was man umsetzen wolle. “Danach, welche Software-Lösung man für seinen Use Case einsetzen muss, richtet sich auch die Infrastruktur”, so Böttcher. Er erwarte aber auch, dass die KI-Modelle im nächsten Entwicklungsschritt effizienter werden und der “Rechenleistungs-Hunger” sich verringere.
Patrick Ratheiser ergänzt: “Es ist grundsätzlich eine Kostenfrage.” Unternehmen müssten sich sehr gut überlegen, ob sie ein eigenes LLM (Large Language Model) betreiben und dieses sogar selbst trainieren wollen, oder lieber doch eine Usage-basierte Lösung wählen. Er sehe bei österreichischen Unternehmen – auch bei größeren – eine klare Tendenz zur zweiten Variante. “Es lässt sich deutlich schneller einrichten, ist kalkulierbarer und auch viel schneller skalierbar”, erklärt Ratheiser.
Etwa im Forschungsbereich sei es jedoch wichtig und notwendig, auch eigene LLMs und die damit verbundene Infrastruktur zu betreiben. Doch auch die Möglichkeit von hybriden Lösungen biete sich an. “Man kann mittlerweile auch Teile in der Cloud lassen und Teile On-Premise. Man kann etwa nur ein datenschutzsicheres LLM selbst betreiben”, erklärt der Experte, der auch bei der Wahl der genutzten Modelle einen hybriden Ansatz empfiehlt: “Man braucht nicht für alle Use Cases das neueste Modell. Manchmal braucht man überhaupt kein LLM.”
Datenschutz: Einige Herausforderungen bei LLMs
Stichwort: Datenschutz. Hier schafft die europäische Datenschutzgrundverordnung (DSGVO) im KI-Bereich besondere Herausforderungen, weiß Natalie Ségur-Cabanac, die vorab betont: “Ich persönlich halte die DSGVO für ein gutes Regulierungswerk, weil sie sehr viel Spielraum gibt. Ich sage immer: Datenschutz ist sehr komplex, aber nicht kompliziert.” Konkret seien etwa der Grundsatz der Zweckbezogenheit, also dass man Daten nur für konkrete Zwecke einsetzen darf, und dass man sie minimierend einsetzen muss, relevant für den KI-Bereich. “Da haben wir schon einen Konflikt, weil man ja [bei LLMs] erst einmal schaut, was man aus möglichst vielen Daten machen kann”, so die Expertin.
Ist KI rechtlich innerhalb der EU sogar per se in einem Graubereich?
Auch Transparenzbestimmungen – sowohl in der DSGVO als auch im AI-Act der EU – seien zu beachten. “Wenn ich KI verwende, muss ich auch wissen, was drinnen ist”, fasst Ségur-Cabanac zusammen. Ist KI also rechtlich innerhalb der EU sogar per se in einem Graubereich? “Nein, das glaube ich nicht. Aber man muss seine Hausaufgaben schon gut machen”, sagt die Expertin. Wichtig sei daher auch die im Rahmen des EU-AI-Acts eingeforderte KI-Kompetenz in Unternehmen – im technischen und rechtlichen Bereich.
KI-Kompetenz als zentrales Thema
Patrick Ratheiser stimmt zu: “Neben der Technologie selber sind bei unseren Kunden die Mitarbeiter ein Riesen-Thema. Man muss sie nicht nur wegen dem AI-Act fit bekommen, sondern es geht darum, sie wirklich auf die Anwendungen einzuschulen.” Wichtig seien dabei auch die Kolleg:innen, die sich bereits mit dem Thema auskennen – die “Pioniere” im Unternehmen. “AI Literacy ist sicherlich das Thema 2025 und in nächster Zeit. So, wie wir gelernt haben, mit dem Smartphone umzugehen, werden wir es auch mit generativer KI lernen”, so Ratheiser.
“Einfach einmal ausprobieren”
Stephan Kraft ergänzt: Neben einer soliden Datenbasis und der notwendigen Kompetenz brauche es bei KI – gerade auch im Bereich Open Source – noch etwas: “Einfach einmal ausprobieren. Es braucht auch Trial and Error. Das ist vielleicht oft das Schwierigste für CFOs und Geschäftsführer.” Dieses Ausprobieren sollte aber innerhalb eines festgelegten Rahmens passieren, damit die KI-Implementierung gelingt, meint Natalie Ségur-Cabanac: “Unternehmen brauchen eine KI-Strategie und müssen wissen, was sie mit der Technologie erreichen wollen.” Auch sich mit den zuvor angesprochenen rechtlichen Anforderungen – Stichwort Compliance – zu beschäftigen, komme zeitlich erst nach der Festlegung der Strategie.
Open Source und KI: “Es geht nicht darum, zu den Guten zu gehören”
Nachlese. Die Nutzung von Open-Source-Modellen eröffnet Unternehmen auch im KI-Bereich weitreichende Möglichkeiten. Es gibt dabei aber auch einiges zu bedenken. Darüber und mehr diskutierten in Folge 5 von "No Hype KI" Stephan Kraft von Red Hat, Florian Böttcher von CANCOM Austria, Natalie Ségur-Cabanac von Women in AI und Patrick Ratheiser von Leftshift.One.
Open Source und KI: “Es geht nicht darum, zu den Guten zu gehören”
Nachlese. Die Nutzung von Open-Source-Modellen eröffnet Unternehmen auch im KI-Bereich weitreichende Möglichkeiten. Es gibt dabei aber auch einiges zu bedenken. Darüber und mehr diskutierten in Folge 5 von "No Hype KI" Stephan Kraft von Red Hat, Florian Böttcher von CANCOM Austria, Natalie Ségur-Cabanac von Women in AI und Patrick Ratheiser von Leftshift.One.
Kollaborativ, transparent, frei zugänglich und nicht profit-orientiert – mit Open-Source-Software wird eine Reihe von Eigenschaften assoziiert. Und oftmals stehen bei der Nutzung ethische Überlegungen im Zentrum. Dabei gibt es auch ganz praktische Gründe, die für eine Verwendung durch Unternehmen sprechen – auch bei der Implementierung von KI-Anwendungen, ist Stephan Kraft, Community Advocate & Business Development OpenShift & Application Services bei Red Hat, überzeugt. In Folge fünf der Serie “No Hype KI” diskutierte er dieses und weitere Themen mit Florian Böttcher, Solution Architect bei CANCOM Austria, Natalie Ségur-Cabanac, Policy Lead bei Women in AI und Patrick Ratheiser, Gründer & CEO von Leftshift.One.
“Thema ein Stück weit aus dieser emotionalen, moralisierenden Ecke herausholen”
“Ich will das Thema ein Stück weit aus dieser emotionalen, moralisierenden Ecke herausholen”, sagt Stephan Kraft. Für Red Hat als weltweit führenden Anbieter für Open-Source-Lösungen für Unternehmen gehen die Argumente für eine Nutzung nämlich weit darüber hinaus. “Es geht nicht darum, Open Source als Selbstzweck zu sehen, um zu den Guten zu gehören”, so der Experte. Tatsächlich sei die Verwendung von Open Source gerade bei der Etablierung von KI im Unternehmen für Startups und KMU eine wichtige Weichenstellung.
Offenheit, um Diskriminierung entgegenzuwirken
Auch Natalie Ségur-Cabanac sieht Open Source als “Key Technology” im KI-Bereich. Für “Women in AI” spiele die Offenheit eine zentrale Rolle: “Diese Offenheit braucht es, um Diskriminierung entgegenzuwirken.” Open Source verbessere den Zugang für Frauen zur Technologie, die Abbildung von Frauen in den Daten und es vergrößere die Möglichkeiten in der Forschung. Man müsse aber auch aufpassen, ob Software wirklich so offen sei, wie behauptet, sagt sie bezogen auf die aktuellen Diskussionen rund um OpenAI, das sich – ursprünglich als offenes Projekt gestartet – zum profitorientierten Unternehmen entwickelte. Es brauche auch eine klare Definition, was “open” sei.
Masse an Möglichkeiten
Leftshift.One-Gründer Patrick Ratheiser betont auch die schiere Masse an Möglichkeiten, die Open Source bietet. “2021 hatten wir weltweit Zugriff auf circa 5.000 Open-Source-Modelle. Jetzt sind es bereits mehr als eine Million.” Die Nutzbarkeit sei also klar gegeben, zudem biete die Technologie eine gewisse Unabhängigkeit und werde über ihre Vielfalt zum Innovationstreiber.
Ist Open Source immer die beste Lösung?
Doch bedeutet das, dass Open Source immer die optimale Lösung ist? Ratheiser sieht das differenziert: “Es ist ganz wichtig zu erkennen, was der Kunde braucht und was in dem Fall gerade notwendig ist. Egal, ob es nun On-Premise, in der Cloud, Open Source oder Closed Source ist.” Florian Böttcher von CANCOM Austria pflichtet hier bei: “Wir setzen genau so auf hybrid.”
Datenstruktur im Hintergrund ist entscheidend
Ein Thema, bei dem bei Open Source Vorsicht geboten ist, spricht Natalie Ségur-Cabanac an. Besonders wichtig sei es bei KI-Anwendungen, eine gute Datenstruktur im Hintergrund zu haben. “Die Verantwortung, dass ein Modell mit sauberen Daten trainiert worden ist, liegt bei den Anbietern. Bei Open Source verschwimmt das ein bisschen. Wer ist wofür zuständig? Das ist eine Herausforderung für die Compliance zu schauen, wo man selbst verantwortlich ist und wo man sich auf einen Anbieter verlassen kann.”
Compliance: Großes Thema – mehr Sichereheit mit professioneller Unterstützung
Stephan Kraft hakt hier ein. Genau aus solchen Gründen gebe es Unternehmen wie Red Hat, die mit ihrem Enterprise-Support für Open-Source-Lösungen die Qualitätssicherung auch im rechtlichen Bereich übernehmen. “Das ist ein ganz wichtiger Teil unseres Versprechens gegenüber Kunden”, so Kraft. Unbedacht im Unternehmen mit Open Source zu arbeiten, könne dagegen in “Compliance-Fallen” führen, pflichtet er Ségur-Cabanac bei.
Das sieht auch Patrick Ratheiser als Thema bei Leftshift.One: “Unsere Lösung ist Closed Source, wir setzen aber im Hintergrund Open Source ein. Wichtig ist, dass wir dem Kunden Compliance garantieren können.” Stephan Kraft empfiehlt Unternehmen bei der Open-Source-Nutzung: “Man kann nicht immer gleich die neueste ‘bleeding edge’-Lösung nehmen sondern sollte etwas konservativer herangehen.”
Infrastruktur: Gut planen, was man wirklich braucht
Unabhängig davon, ob man nun Open Source oder Closed Source nutzt, braucht es für die Nutzung von KI die richtige Infrastruktur. “Es kommt natürlich auf den Use Case an, den ein Unternehmen umsetzen will. Da sind die Anforderungen an die Infrastruktur sehr unterschiedlich”, grenzt Florian Böttcher ein. CANCOM Austria unterstützt seine Kunden in genau der Frage. Anwendungen wie das Training von KI-Modellen würde aus gutem Grund kaum in Österreich umgesetzt. “KI ist sehr stromhungrig und entwickelt viel Hitze. Das ist schwierig für ein eigenes Data-Center im Unternehmen, gerade wenn man die Strompreise in Österreich ansieht”, so Böttcher.
“Rechenleistungs-Hunger” von KI könnte sich in Zukunft verringern
Wichtig sei es letztlich, sich als Unternehmen sehr klar darüber zu sein, was man umsetzen wolle. “Danach, welche Software-Lösung man für seinen Use Case einsetzen muss, richtet sich auch die Infrastruktur”, so Böttcher. Er erwarte aber auch, dass die KI-Modelle im nächsten Entwicklungsschritt effizienter werden und der “Rechenleistungs-Hunger” sich verringere.
Patrick Ratheiser ergänzt: “Es ist grundsätzlich eine Kostenfrage.” Unternehmen müssten sich sehr gut überlegen, ob sie ein eigenes LLM (Large Language Model) betreiben und dieses sogar selbst trainieren wollen, oder lieber doch eine Usage-basierte Lösung wählen. Er sehe bei österreichischen Unternehmen – auch bei größeren – eine klare Tendenz zur zweiten Variante. “Es lässt sich deutlich schneller einrichten, ist kalkulierbarer und auch viel schneller skalierbar”, erklärt Ratheiser.
Etwa im Forschungsbereich sei es jedoch wichtig und notwendig, auch eigene LLMs und die damit verbundene Infrastruktur zu betreiben. Doch auch die Möglichkeit von hybriden Lösungen biete sich an. “Man kann mittlerweile auch Teile in der Cloud lassen und Teile On-Premise. Man kann etwa nur ein datenschutzsicheres LLM selbst betreiben”, erklärt der Experte, der auch bei der Wahl der genutzten Modelle einen hybriden Ansatz empfiehlt: “Man braucht nicht für alle Use Cases das neueste Modell. Manchmal braucht man überhaupt kein LLM.”
Datenschutz: Einige Herausforderungen bei LLMs
Stichwort: Datenschutz. Hier schafft die europäische Datenschutzgrundverordnung (DSGVO) im KI-Bereich besondere Herausforderungen, weiß Natalie Ségur-Cabanac, die vorab betont: “Ich persönlich halte die DSGVO für ein gutes Regulierungswerk, weil sie sehr viel Spielraum gibt. Ich sage immer: Datenschutz ist sehr komplex, aber nicht kompliziert.” Konkret seien etwa der Grundsatz der Zweckbezogenheit, also dass man Daten nur für konkrete Zwecke einsetzen darf, und dass man sie minimierend einsetzen muss, relevant für den KI-Bereich. “Da haben wir schon einen Konflikt, weil man ja [bei LLMs] erst einmal schaut, was man aus möglichst vielen Daten machen kann”, so die Expertin.
Ist KI rechtlich innerhalb der EU sogar per se in einem Graubereich?
Auch Transparenzbestimmungen – sowohl in der DSGVO als auch im AI-Act der EU – seien zu beachten. “Wenn ich KI verwende, muss ich auch wissen, was drinnen ist”, fasst Ségur-Cabanac zusammen. Ist KI also rechtlich innerhalb der EU sogar per se in einem Graubereich? “Nein, das glaube ich nicht. Aber man muss seine Hausaufgaben schon gut machen”, sagt die Expertin. Wichtig sei daher auch die im Rahmen des EU-AI-Acts eingeforderte KI-Kompetenz in Unternehmen – im technischen und rechtlichen Bereich.
KI-Kompetenz als zentrales Thema
Patrick Ratheiser stimmt zu: “Neben der Technologie selber sind bei unseren Kunden die Mitarbeiter ein Riesen-Thema. Man muss sie nicht nur wegen dem AI-Act fit bekommen, sondern es geht darum, sie wirklich auf die Anwendungen einzuschulen.” Wichtig seien dabei auch die Kolleg:innen, die sich bereits mit dem Thema auskennen – die “Pioniere” im Unternehmen. “AI Literacy ist sicherlich das Thema 2025 und in nächster Zeit. So, wie wir gelernt haben, mit dem Smartphone umzugehen, werden wir es auch mit generativer KI lernen”, so Ratheiser.
“Einfach einmal ausprobieren”
Stephan Kraft ergänzt: Neben einer soliden Datenbasis und der notwendigen Kompetenz brauche es bei KI – gerade auch im Bereich Open Source – noch etwas: “Einfach einmal ausprobieren. Es braucht auch Trial and Error. Das ist vielleicht oft das Schwierigste für CFOs und Geschäftsführer.” Dieses Ausprobieren sollte aber innerhalb eines festgelegten Rahmens passieren, damit die KI-Implementierung gelingt, meint Natalie Ségur-Cabanac: “Unternehmen brauchen eine KI-Strategie und müssen wissen, was sie mit der Technologie erreichen wollen.” Auch sich mit den zuvor angesprochenen rechtlichen Anforderungen – Stichwort Compliance – zu beschäftigen, komme zeitlich erst nach der Festlegung der Strategie.
Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.
We collect and process your data on this site to better understand how it is used. You can give your consent to all or selected purposes, or you can decline them all. For more information, see our privacy policy.
AnalyticsWe'll collect information about your visit to our site. It helps us understand how the site is used – what's working, what might be broken and what we should improve.
RemarketingWe'll use your data to show you more relevant ads on other sites and social media. We'll use it to measure how effective our ads are. We'll also use it to exclude you from campaigns that you might not like.
User feedbackWe'll use your data to learn how our user interface is working. It'll help us to improve our site for all users.