11.03.2020

XUND: Hohes sechsstelliges Investment durch Haselsteiner und Tyrolean Business Angels

XUND ist eine Health-App, die mittels KI dem Patienten Empfehlungen gibt. Die Sicherheit der Daten soll dank Blockchain-Technologie gewährleistet werden.
/artikel/xund-haselsteiner-tyrolean-business-angels
Die Gründer von XUND.
Die Gründer von XUND. (c) XUND

Der KI-gestützte  Gesundheitsassistent des Wiener HealthTech-Startups XUND soll Patienten künftig zuverlässige und vertrauenswürdige Informationen über die eigene Gesundheit via App liefern. Kurz vor dem eigentlichen Launch der iOS App wurde nun eine Finanzierungsrunde im hohen sechsstelligen Bereich abgeschlossen. Unter der Führung von Peak Pride konnten mit der Haselsteiner Familien-Privatstiftung und den Tyrolean Business Angels zwei namhafte Investoren gewonnen werden.

+++Mehr zu Health und Life-Science+++

„Überzeugt hat uns insbesondere das starke Gründerteam, das über die letzten Monate große Ausdauer und Umsetzungsstärke bewiesen hat. Innerhalb kürzester Zeit hat XUND ein skalierbares Produkt mit vielseitig verwertbarem Technology Stack entwickelt, das einen echten Mehrwert für alle Stakeholder bietet“, sagt Sebastian Wiener, Investment Managervon Peak Pride, über das Investment in XUND.

iOS-App soll bald im DACH-Raum launchen

Das 2018 von Tamás Petrovics, Lukas Seper und Zoltán Tarabo gegründete Startup beschäftigt zwölf Mitarbeiter und hat neben dem Hauptsitz in Wien auch ein Büro in Budapest. Mit der Entwicklung einer digitalen Schnittstelle zwischen Patienten und dem Gesundheitssystem will XUND die Qualität und den Zugang zur Gesundheitsversorgung verbessern, heißt es in einer Mitteilung des Startups.

+++Alle Investments im Überblick+++

Der Launch der iOS-App, die sich aktuell in der Beta-Phase befindet, soll möglichst zeitnah realisiert werden. Für die Markteinführung fokussiert sich XUND zunächst auf den deutschsprachigen Raum. „Danach wollen wir schrittweise in andere EU-Länder expandieren. Vor allem Osteuropa ist für uns ein attraktiver Zielmarkt, wo wir glauben einen signifikanten Impact auf die Qualität der Gesundheitsversorgung haben zu können“, so Tamás Petrovics, Co-Founder und CEO von XUND.

So funktioniert die XUND-App

Die Idee dahinter ist, dass ähnlich wie bei einem realen Arztbesuch in der Interaktion mit dem Nutzer auf bestehende, gesundheitliche Beschwerden eingegangen wird. Durch die Analyse von zusätzlichen Informationen wie Alter, Geschlecht und Krankheitsgeschichte sollen mögliche Zusammenhänge erkannt und wahrscheinliche Krankheitsbilder frühzeitig und zuverlässig identifiziert werden.

+++Ein Guide für Startups zum Umgang mit dem Coronavirus+++

Auf der Grundlage des persönlichen Gesundheitsprofils sollen dann individuelle Diagnose- und Behandlungspfade aufgezeigt und relevante Gesundheitsdienstleistungen angeboten werden. Das kann ein geeigneter Arzt in der Umgebung, die nächste offene Apotheke oder aber auch eine digitale Anwendung sein, heißt es seitens des Startups.

Durch ein internes Team an Ärzten aus unterschiedlichen Fachdisziplinen will XUND sicherstellen, dass die medizinischen Inhalte in der App verständlich und nachvollziehbar dargestellt werden. Dadurch sollen Nutzer selbst dazu ermächtigt werden, informierte Entscheidungen zu treffen, Gesundheitsrisiken zu reduzieren und somit die Lebensqualität zu erhöhen.

Künstliche Intelligenz als Basis der XIND-App

Auf technologischer Ebene wird dies ermöglicht durch die eigens entwickelte Medical Engine, die im Laufe des Jahres auch Versicherungen, Krankenkassen und anderen Gesundheitsunternehmen als API-Lösung zur Verfügung gestellt werden soll. Gemeinsam mit der TU Wien unter der Leitung von Allan Hanbury, selbst Co-Founder des Wiener Startups contextflow, wurde dafür im vergangenen Jahr das Tool DISCO (Disease Symptom Correlations Obtainment) entwickelt.

Die medizinischen Inhalte der App werden zunächst mit Hilfe Künstlicher Intelligenz aus 1,5 Millionen wissenschaftlicher Fachpublikationen extrahiert und klassifiziert, bevor sie durch das ärztliche Team von XUND überprüft und mit Erfahrungen aus der Praxis angereichert werden. Die Software ist dabei eine große Hilfe: Ohne die KI-Unterstützung würde ein einzelner Arzt für die Durchsicht dieser Datenmengen mehr als 420 Jahre benötigen.

XUND will Zertifizierung als Medizinprodukt

Vor dem Markteintritt soll XUND die Zertifizierung als Medizinprodukt erhalten. Mit diesem Schritt will das Team sicherstellen, dass die Patientensicherheit vollumfänglich gewährleistet ist und die Medical Engine sowohl den Qualitätsstandards als auch den rechtlichen Anforderungen entspricht.

+++Nächster Meilenstein: Medicus AI bekommt begehrte EU-Zertifizierung+++

Ein weiterer Fokus liegt auf dem Schutz der Gesundheitsdaten. In sogenannten Health Tresors werden die Daten mittels Ende-zu-Ende-Verschlüsselung (E2EE) unabhängig und losgelöst von XUND gespeichert und verwaltet. Darüber hinaus stellt eine Blockchain-Lösung sicher, dass jeder Zugriff auf den persönlichen Health Tresor transparent und nachvollziehbar protokolliert wird. Die Hoheit über die Daten liegt also jederzeit und ausschließlich in den Händen der Nutzer, versprechen die Gründer des Startups.

Redaktionstipps
Deine ungelesenen Artikel:
27.01.2025

Open Source und KI: „Es geht nicht darum, zu den Guten zu gehören“

Nachlese. Die Nutzung von Open-Source-Modellen eröffnet Unternehmen auch im KI-Bereich weitreichende Möglichkeiten. Es gibt dabei aber auch einiges zu bedenken. Darüber und mehr diskutierten in Folge 5 von "No Hype KI" Stephan Kraft von Red Hat, Florian Böttcher von CANCOM Austria, Natalie Ségur-Cabanac von Women in AI und Patrick Ratheiser von Leftshift.One.
/artikel/no-hype-ki-folge-5
27.01.2025

Open Source und KI: „Es geht nicht darum, zu den Guten zu gehören“

Nachlese. Die Nutzung von Open-Source-Modellen eröffnet Unternehmen auch im KI-Bereich weitreichende Möglichkeiten. Es gibt dabei aber auch einiges zu bedenken. Darüber und mehr diskutierten in Folge 5 von "No Hype KI" Stephan Kraft von Red Hat, Florian Böttcher von CANCOM Austria, Natalie Ségur-Cabanac von Women in AI und Patrick Ratheiser von Leftshift.One.
/artikel/no-hype-ki-folge-5

„No Hype KI“ wird unterstützt von CANCOM AustriaIBMITSVMicrosoftNagarroRed Hat und Universität Graz.

Kollaborativ, transparent, frei zugänglich und nicht profit-orientiert – mit Open-Source-Software wird eine Reihe von Eigenschaften assoziiert. Und oftmals stehen bei der Nutzung ethische Überlegungen im Zentrum. Dabei gibt es auch ganz praktische Gründe, die für eine Verwendung durch Unternehmen sprechen – auch bei der Implementierung von KI-Anwendungen, ist Stephan Kraft, Community Advocate & Business Development OpenShift & Application Services bei Red Hat, überzeugt. In Folge fünf der Serie „No Hype KI“ diskutierte er dieses und weitere Themen mit Florian Böttcher, Solution Architect bei CANCOM Austria, Natalie Ségur-Cabanac, Policy Lead bei Women in AI und Patrick Ratheiser, Gründer & CEO von Leftshift.One.

„Thema ein Stück weit aus dieser emotionalen, moralisierenden Ecke herausholen“

„Ich will das Thema ein Stück weit aus dieser emotionalen, moralisierenden Ecke herausholen“, sagt Stephan Kraft. Für Red Hat als weltweit führenden Anbieter für Open-Source-Lösungen für Unternehmen gehen die Argumente für eine Nutzung nämlich weit darüber hinaus. „Es geht nicht darum, Open Source als Selbstzweck zu sehen, um zu den Guten zu gehören“, so der Experte. Tatsächlich sei die Verwendung von Open Source gerade bei der Etablierung von KI im Unternehmen für Startups und KMU eine wichtige Weichenstellung.

Offenheit, um Diskriminierung entgegenzuwirken

Auch Natalie Ségur-Cabanac sieht Open Source als „Key Technology“ im KI-Bereich. Für „Women in AI“ spiele die Offenheit eine zentrale Rolle: „Diese Offenheit braucht es, um Diskriminierung entgegenzuwirken.“ Open Source verbessere den Zugang für Frauen zur Technologie, die Abbildung von Frauen in den Daten und es vergrößere die Möglichkeiten in der Forschung. Man müsse aber auch aufpassen, ob Software wirklich so offen sei, wie behauptet, sagt sie bezogen auf die aktuellen Diskussionen rund um OpenAI, das sich – ursprünglich als offenes Projekt gestartet – zum profitorientierten Unternehmen entwickelte. Es brauche auch eine klare Definition, was „open“ sei.

Masse an Möglichkeiten

Leftshift.One-Gründer Patrick Ratheiser betont auch die schiere Masse an Möglichkeiten, die Open Source bietet. „2021 hatten wir weltweit Zugriff auf circa 5.000 Open-Source-Modelle. Jetzt sind es bereits mehr als eine Million.“ Die Nutzbarkeit sei also klar gegeben, zudem biete die Technologie eine gewisse Unabhängigkeit und werde über ihre Vielfalt zum Innovationstreiber.

Ist Open Source immer die beste Lösung?

Doch bedeutet das, dass Open Source immer die optimale Lösung ist? Ratheiser sieht das differenziert: „Es ist ganz wichtig zu erkennen, was der Kunde braucht und was in dem Fall gerade notwendig ist. Egal, ob es nun On-Premise, in der Cloud, Open Source oder Closed Source ist.“ Florian Böttcher von CANCOM Austria pflichtet hier bei: „Wir setzen genau so auf hybrid.“

Datenstruktur im Hintergrund ist entscheidend

Ein Thema, bei dem bei Open Source Vorsicht geboten ist, spricht Natalie Ségur-Cabanac an. Besonders wichtig sei es bei KI-Anwendungen, eine gute Datenstruktur im Hintergrund zu haben. „Die Verantwortung, dass ein Modell mit sauberen Daten trainiert worden ist, liegt bei den Anbietern. Bei Open Source verschwimmt das ein bisschen. Wer ist wofür zuständig? Das ist eine Herausforderung für die Compliance zu schauen, wo man selbst verantwortlich ist und wo man sich auf einen Anbieter verlassen kann.“

Compliance: Großes Thema – mehr Sichereheit mit professioneller Unterstützung

Stephan Kraft hakt hier ein. Genau aus solchen Gründen gebe es Unternehmen wie Red Hat, die mit ihrem Enterprise-Support für Open-Source-Lösungen die Qualitätssicherung auch im rechtlichen Bereich übernehmen. „Das ist ein ganz wichtiger Teil unseres Versprechens gegenüber Kunden“, so Kraft. Unbedacht im Unternehmen mit Open Source zu arbeiten, könne dagegen in „Compliance-Fallen“ führen, pflichtet er Ségur-Cabanac bei.

Das sieht auch Patrick Ratheiser als Thema bei Leftshift.One: „Unsere Lösung ist Closed Source, wir setzen aber im Hintergrund Open Source ein. Wichtig ist, dass wir dem Kunden Compliance garantieren können.“ Stephan Kraft empfiehlt Unternehmen bei der Open-Source-Nutzung: „Man kann nicht immer gleich die neueste ‚bleeding edge‘-Lösung nehmen sondern sollte etwas konservativer herangehen.“

Infrastruktur: Gut planen, was man wirklich braucht

Unabhängig davon, ob man nun Open Source oder Closed Source nutzt, braucht es für die Nutzung von KI die richtige Infrastruktur. „Es kommt natürlich auf den Use Case an, den ein Unternehmen umsetzen will. Da sind die Anforderungen an die Infrastruktur sehr unterschiedlich“, grenzt Florian Böttcher ein. CANCOM Austria unterstützt seine Kunden in genau der Frage. Anwendungen wie das Training von KI-Modellen würde aus gutem Grund kaum in Österreich umgesetzt. „KI ist sehr stromhungrig und entwickelt viel Hitze. Das ist schwierig für ein eigenes Data-Center im Unternehmen, gerade wenn man die Strompreise in Österreich ansieht“, so Böttcher.

„Rechenleistungs-Hunger“ von KI könnte sich in Zukunft verringern

Wichtig sei es letztlich, sich als Unternehmen sehr klar darüber zu sein, was man umsetzen wolle. „Danach, welche Software-Lösung man für seinen Use Case einsetzen muss, richtet sich auch die Infrastruktur“, so Böttcher. Er erwarte aber auch, dass die KI-Modelle im nächsten Entwicklungsschritt effizienter werden und der „Rechenleistungs-Hunger“ sich verringere.

Patrick Ratheiser ergänzt: „Es ist grundsätzlich eine Kostenfrage.“ Unternehmen müssten sich sehr gut überlegen, ob sie ein eigenes LLM (Large Language Model) betreiben und dieses sogar selbst trainieren wollen, oder lieber doch eine Usage-basierte Lösung wählen. Er sehe bei österreichischen Unternehmen – auch bei größeren – eine klare Tendenz zur zweiten Variante. „Es lässt sich deutlich schneller einrichten, ist kalkulierbarer und auch viel schneller skalierbar“, erklärt Ratheiser.

Etwa im Forschungsbereich sei es jedoch wichtig und notwendig, auch eigene LLMs und die damit verbundene Infrastruktur zu betreiben. Doch auch die Möglichkeit von hybriden Lösungen biete sich an. „Man kann mittlerweile auch Teile in der Cloud lassen und Teile On-Premise. Man kann etwa nur ein datenschutzsicheres LLM selbst betreiben“, erklärt der Experte, der auch bei der Wahl der genutzten Modelle einen hybriden Ansatz empfiehlt: „Man braucht nicht für alle Use Cases das neueste Modell. Manchmal braucht man überhaupt kein LLM.“

Datenschutz: Einige Herausforderungen bei LLMs

Stichwort: Datenschutz. Hier schafft die europäische Datenschutzgrundverordnung (DSGVO) im KI-Bereich besondere Herausforderungen, weiß Natalie Ségur-Cabanac, die vorab betont: „Ich persönlich halte die DSGVO für ein gutes Regulierungswerk, weil sie sehr viel Spielraum gibt. Ich sage immer: Datenschutz ist sehr komplex, aber nicht kompliziert.“ Konkret seien etwa der Grundsatz der Zweckbezogenheit, also dass man Daten nur für konkrete Zwecke einsetzen darf, und dass man sie minimierend einsetzen muss, relevant für den KI-Bereich. „Da haben wir schon einen Konflikt, weil man ja [bei LLMs] erst einmal schaut, was man aus möglichst vielen Daten machen kann“, so die Expertin.

Ist KI rechtlich innerhalb der EU sogar per se in einem Graubereich?

Auch Transparenzbestimmungen – sowohl in der DSGVO als auch im AI-Act der EU – seien zu beachten. „Wenn ich KI verwende, muss ich auch wissen, was drinnen ist“, fasst Ségur-Cabanac zusammen. Ist KI also rechtlich innerhalb der EU sogar per se in einem Graubereich? „Nein, das glaube ich nicht. Aber man muss seine Hausaufgaben schon gut machen“, sagt die Expertin. Wichtig sei daher auch die im Rahmen des EU-AI-Acts eingeforderte KI-Kompetenz in Unternehmen – im technischen und rechtlichen Bereich.

KI-Kompetenz als zentrales Thema

Patrick Ratheiser stimmt zu: „Neben der Technologie selber sind bei unseren Kunden die Mitarbeiter ein Riesen-Thema. Man muss sie nicht nur wegen dem AI-Act fit bekommen, sondern es geht darum, sie wirklich auf die Anwendungen einzuschulen.“ Wichtig seien dabei auch die Kolleg:innen, die sich bereits mit dem Thema auskennen – die „Pioniere“ im Unternehmen. „AI Literacy ist sicherlich das Thema 2025 und in nächster Zeit. So, wie wir gelernt haben, mit dem Smartphone umzugehen, werden wir es auch mit generativer KI lernen“, so Ratheiser.

„Einfach einmal ausprobieren“

Stephan Kraft ergänzt: Neben einer soliden Datenbasis und der notwendigen Kompetenz brauche es bei KI – gerade auch im Bereich Open Source – noch etwas: „Einfach einmal ausprobieren. Es braucht auch Trial and Error. Das ist vielleicht oft das Schwierigste für CFOs und Geschäftsführer.“ Dieses Ausprobieren sollte aber innerhalb eines festgelegten Rahmens passieren, damit die KI-Implementierung gelingt, meint Natalie Ségur-Cabanac: „Unternehmen brauchen eine KI-Strategie und müssen wissen, was sie mit der Technologie erreichen wollen.“ Auch sich mit den zuvor angesprochenen rechtlichen Anforderungen – Stichwort Compliance – zu beschäftigen, komme zeitlich erst nach der Festlegung der Strategie.


Die gesamte Folge ansehen:

Die Nachlesen der bisherigen Folgen:

Folge 1: “No Hype KI – wo stehen wir nach zwei Jahren ChatGPT?

Folge 2: “Was kann KI in Gesundheit, Bildung und im öffentlichen Sektor leisten?

Folge 3: “Der größte Feind ist Zettel und Bleistift”: Erfolgsfaktoren und Herausforderungen in der KI-Praxis”

Folge 4: KI-Geschäftsmodelle: “Wir nutzen nur einen Bruchteil dessen, was möglich ist”


Die Serie wird von brutkasten in redaktioneller Unabhängigkeit mit finanzieller Unterstützung unserer Partner:innen produziert.

No Hype KI
27.01.2025

Open Source und KI: „Es geht nicht darum, zu den Guten zu gehören“

Nachlese. Die Nutzung von Open-Source-Modellen eröffnet Unternehmen auch im KI-Bereich weitreichende Möglichkeiten. Es gibt dabei aber auch einiges zu bedenken. Darüber und mehr diskutierten in Folge 5 von "No Hype KI" Stephan Kraft von Red Hat, Florian Böttcher von CANCOM Austria, Natalie Ségur-Cabanac von Women in AI und Patrick Ratheiser von Leftshift.One.
27.01.2025

Open Source und KI: „Es geht nicht darum, zu den Guten zu gehören“

Nachlese. Die Nutzung von Open-Source-Modellen eröffnet Unternehmen auch im KI-Bereich weitreichende Möglichkeiten. Es gibt dabei aber auch einiges zu bedenken. Darüber und mehr diskutierten in Folge 5 von "No Hype KI" Stephan Kraft von Red Hat, Florian Böttcher von CANCOM Austria, Natalie Ségur-Cabanac von Women in AI und Patrick Ratheiser von Leftshift.One.

„No Hype KI“ wird unterstützt von CANCOM AustriaIBMITSVMicrosoftNagarroRed Hat und Universität Graz.

Kollaborativ, transparent, frei zugänglich und nicht profit-orientiert – mit Open-Source-Software wird eine Reihe von Eigenschaften assoziiert. Und oftmals stehen bei der Nutzung ethische Überlegungen im Zentrum. Dabei gibt es auch ganz praktische Gründe, die für eine Verwendung durch Unternehmen sprechen – auch bei der Implementierung von KI-Anwendungen, ist Stephan Kraft, Community Advocate & Business Development OpenShift & Application Services bei Red Hat, überzeugt. In Folge fünf der Serie „No Hype KI“ diskutierte er dieses und weitere Themen mit Florian Böttcher, Solution Architect bei CANCOM Austria, Natalie Ségur-Cabanac, Policy Lead bei Women in AI und Patrick Ratheiser, Gründer & CEO von Leftshift.One.

„Thema ein Stück weit aus dieser emotionalen, moralisierenden Ecke herausholen“

„Ich will das Thema ein Stück weit aus dieser emotionalen, moralisierenden Ecke herausholen“, sagt Stephan Kraft. Für Red Hat als weltweit führenden Anbieter für Open-Source-Lösungen für Unternehmen gehen die Argumente für eine Nutzung nämlich weit darüber hinaus. „Es geht nicht darum, Open Source als Selbstzweck zu sehen, um zu den Guten zu gehören“, so der Experte. Tatsächlich sei die Verwendung von Open Source gerade bei der Etablierung von KI im Unternehmen für Startups und KMU eine wichtige Weichenstellung.

Offenheit, um Diskriminierung entgegenzuwirken

Auch Natalie Ségur-Cabanac sieht Open Source als „Key Technology“ im KI-Bereich. Für „Women in AI“ spiele die Offenheit eine zentrale Rolle: „Diese Offenheit braucht es, um Diskriminierung entgegenzuwirken.“ Open Source verbessere den Zugang für Frauen zur Technologie, die Abbildung von Frauen in den Daten und es vergrößere die Möglichkeiten in der Forschung. Man müsse aber auch aufpassen, ob Software wirklich so offen sei, wie behauptet, sagt sie bezogen auf die aktuellen Diskussionen rund um OpenAI, das sich – ursprünglich als offenes Projekt gestartet – zum profitorientierten Unternehmen entwickelte. Es brauche auch eine klare Definition, was „open“ sei.

Masse an Möglichkeiten

Leftshift.One-Gründer Patrick Ratheiser betont auch die schiere Masse an Möglichkeiten, die Open Source bietet. „2021 hatten wir weltweit Zugriff auf circa 5.000 Open-Source-Modelle. Jetzt sind es bereits mehr als eine Million.“ Die Nutzbarkeit sei also klar gegeben, zudem biete die Technologie eine gewisse Unabhängigkeit und werde über ihre Vielfalt zum Innovationstreiber.

Ist Open Source immer die beste Lösung?

Doch bedeutet das, dass Open Source immer die optimale Lösung ist? Ratheiser sieht das differenziert: „Es ist ganz wichtig zu erkennen, was der Kunde braucht und was in dem Fall gerade notwendig ist. Egal, ob es nun On-Premise, in der Cloud, Open Source oder Closed Source ist.“ Florian Böttcher von CANCOM Austria pflichtet hier bei: „Wir setzen genau so auf hybrid.“

Datenstruktur im Hintergrund ist entscheidend

Ein Thema, bei dem bei Open Source Vorsicht geboten ist, spricht Natalie Ségur-Cabanac an. Besonders wichtig sei es bei KI-Anwendungen, eine gute Datenstruktur im Hintergrund zu haben. „Die Verantwortung, dass ein Modell mit sauberen Daten trainiert worden ist, liegt bei den Anbietern. Bei Open Source verschwimmt das ein bisschen. Wer ist wofür zuständig? Das ist eine Herausforderung für die Compliance zu schauen, wo man selbst verantwortlich ist und wo man sich auf einen Anbieter verlassen kann.“

Compliance: Großes Thema – mehr Sichereheit mit professioneller Unterstützung

Stephan Kraft hakt hier ein. Genau aus solchen Gründen gebe es Unternehmen wie Red Hat, die mit ihrem Enterprise-Support für Open-Source-Lösungen die Qualitätssicherung auch im rechtlichen Bereich übernehmen. „Das ist ein ganz wichtiger Teil unseres Versprechens gegenüber Kunden“, so Kraft. Unbedacht im Unternehmen mit Open Source zu arbeiten, könne dagegen in „Compliance-Fallen“ führen, pflichtet er Ségur-Cabanac bei.

Das sieht auch Patrick Ratheiser als Thema bei Leftshift.One: „Unsere Lösung ist Closed Source, wir setzen aber im Hintergrund Open Source ein. Wichtig ist, dass wir dem Kunden Compliance garantieren können.“ Stephan Kraft empfiehlt Unternehmen bei der Open-Source-Nutzung: „Man kann nicht immer gleich die neueste ‚bleeding edge‘-Lösung nehmen sondern sollte etwas konservativer herangehen.“

Infrastruktur: Gut planen, was man wirklich braucht

Unabhängig davon, ob man nun Open Source oder Closed Source nutzt, braucht es für die Nutzung von KI die richtige Infrastruktur. „Es kommt natürlich auf den Use Case an, den ein Unternehmen umsetzen will. Da sind die Anforderungen an die Infrastruktur sehr unterschiedlich“, grenzt Florian Böttcher ein. CANCOM Austria unterstützt seine Kunden in genau der Frage. Anwendungen wie das Training von KI-Modellen würde aus gutem Grund kaum in Österreich umgesetzt. „KI ist sehr stromhungrig und entwickelt viel Hitze. Das ist schwierig für ein eigenes Data-Center im Unternehmen, gerade wenn man die Strompreise in Österreich ansieht“, so Böttcher.

„Rechenleistungs-Hunger“ von KI könnte sich in Zukunft verringern

Wichtig sei es letztlich, sich als Unternehmen sehr klar darüber zu sein, was man umsetzen wolle. „Danach, welche Software-Lösung man für seinen Use Case einsetzen muss, richtet sich auch die Infrastruktur“, so Böttcher. Er erwarte aber auch, dass die KI-Modelle im nächsten Entwicklungsschritt effizienter werden und der „Rechenleistungs-Hunger“ sich verringere.

Patrick Ratheiser ergänzt: „Es ist grundsätzlich eine Kostenfrage.“ Unternehmen müssten sich sehr gut überlegen, ob sie ein eigenes LLM (Large Language Model) betreiben und dieses sogar selbst trainieren wollen, oder lieber doch eine Usage-basierte Lösung wählen. Er sehe bei österreichischen Unternehmen – auch bei größeren – eine klare Tendenz zur zweiten Variante. „Es lässt sich deutlich schneller einrichten, ist kalkulierbarer und auch viel schneller skalierbar“, erklärt Ratheiser.

Etwa im Forschungsbereich sei es jedoch wichtig und notwendig, auch eigene LLMs und die damit verbundene Infrastruktur zu betreiben. Doch auch die Möglichkeit von hybriden Lösungen biete sich an. „Man kann mittlerweile auch Teile in der Cloud lassen und Teile On-Premise. Man kann etwa nur ein datenschutzsicheres LLM selbst betreiben“, erklärt der Experte, der auch bei der Wahl der genutzten Modelle einen hybriden Ansatz empfiehlt: „Man braucht nicht für alle Use Cases das neueste Modell. Manchmal braucht man überhaupt kein LLM.“

Datenschutz: Einige Herausforderungen bei LLMs

Stichwort: Datenschutz. Hier schafft die europäische Datenschutzgrundverordnung (DSGVO) im KI-Bereich besondere Herausforderungen, weiß Natalie Ségur-Cabanac, die vorab betont: „Ich persönlich halte die DSGVO für ein gutes Regulierungswerk, weil sie sehr viel Spielraum gibt. Ich sage immer: Datenschutz ist sehr komplex, aber nicht kompliziert.“ Konkret seien etwa der Grundsatz der Zweckbezogenheit, also dass man Daten nur für konkrete Zwecke einsetzen darf, und dass man sie minimierend einsetzen muss, relevant für den KI-Bereich. „Da haben wir schon einen Konflikt, weil man ja [bei LLMs] erst einmal schaut, was man aus möglichst vielen Daten machen kann“, so die Expertin.

Ist KI rechtlich innerhalb der EU sogar per se in einem Graubereich?

Auch Transparenzbestimmungen – sowohl in der DSGVO als auch im AI-Act der EU – seien zu beachten. „Wenn ich KI verwende, muss ich auch wissen, was drinnen ist“, fasst Ségur-Cabanac zusammen. Ist KI also rechtlich innerhalb der EU sogar per se in einem Graubereich? „Nein, das glaube ich nicht. Aber man muss seine Hausaufgaben schon gut machen“, sagt die Expertin. Wichtig sei daher auch die im Rahmen des EU-AI-Acts eingeforderte KI-Kompetenz in Unternehmen – im technischen und rechtlichen Bereich.

KI-Kompetenz als zentrales Thema

Patrick Ratheiser stimmt zu: „Neben der Technologie selber sind bei unseren Kunden die Mitarbeiter ein Riesen-Thema. Man muss sie nicht nur wegen dem AI-Act fit bekommen, sondern es geht darum, sie wirklich auf die Anwendungen einzuschulen.“ Wichtig seien dabei auch die Kolleg:innen, die sich bereits mit dem Thema auskennen – die „Pioniere“ im Unternehmen. „AI Literacy ist sicherlich das Thema 2025 und in nächster Zeit. So, wie wir gelernt haben, mit dem Smartphone umzugehen, werden wir es auch mit generativer KI lernen“, so Ratheiser.

„Einfach einmal ausprobieren“

Stephan Kraft ergänzt: Neben einer soliden Datenbasis und der notwendigen Kompetenz brauche es bei KI – gerade auch im Bereich Open Source – noch etwas: „Einfach einmal ausprobieren. Es braucht auch Trial and Error. Das ist vielleicht oft das Schwierigste für CFOs und Geschäftsführer.“ Dieses Ausprobieren sollte aber innerhalb eines festgelegten Rahmens passieren, damit die KI-Implementierung gelingt, meint Natalie Ségur-Cabanac: „Unternehmen brauchen eine KI-Strategie und müssen wissen, was sie mit der Technologie erreichen wollen.“ Auch sich mit den zuvor angesprochenen rechtlichen Anforderungen – Stichwort Compliance – zu beschäftigen, komme zeitlich erst nach der Festlegung der Strategie.


Die gesamte Folge ansehen:

Die Nachlesen der bisherigen Folgen:

Folge 1: “No Hype KI – wo stehen wir nach zwei Jahren ChatGPT?

Folge 2: “Was kann KI in Gesundheit, Bildung und im öffentlichen Sektor leisten?

Folge 3: “Der größte Feind ist Zettel und Bleistift”: Erfolgsfaktoren und Herausforderungen in der KI-Praxis”

Folge 4: KI-Geschäftsmodelle: “Wir nutzen nur einen Bruchteil dessen, was möglich ist”


Die Serie wird von brutkasten in redaktioneller Unabhängigkeit mit finanzieller Unterstützung unserer Partner:innen produziert.

No Hype KI
Toll dass du so interessiert bist!
Hinterlasse uns bitte ein Feedback über den Button am linken Bildschirmrand.
Und klicke hier um die ganze Welt von der brutkasten zu entdecken.

brutkasten Newsletter

Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.

Montag, Mittwoch und Freitag