Wenn Mitarbeiter krank werden oder auf Urlaub gehen, kann es vorkommen, dass im Büro das Chaos ausbricht. Vor allem in Job-Positionen mit viel Verantwortung oder in Unternehmen, wo jeder auf das Funktionieren des anderen angewiesen ist, kann der Ausfall einer Person spürbar sein. Das kann die betroffenen Mitarbeiter, aber auch das Unternehmen unangenehm unter Druck setzen. Aus diesem Problem hat Tandemploy ein Business-Modell gemacht: Auf der Online-Plattform des Startups können nicht nur einzelne Mitarbeiter nach einem Partner suchen, sogar ganze Unternehmen oder Teams können sich matchen lassen. Eine weitere Säule des Startups soll das Consulting von Firmen sein, die das Jobsharing-Konzept ebenfalls ausprobieren wollen.
Kompetenzen werden aufgeteilt
Kern der Idee ist das Zusammenbringen von Teilzeitkräften, die zusammen eine Vollzeitstelle besetzen. Damit werden die Kompetenzen aufgeteilt und Mitarbeiter können wieder beruhigt auf Urlaub gehen, ohne ständig erreichbar sein zu müssen. Viele Tandem-Konstellationen gehen über die klassische 100-Prozent-Stelle hinaus und umfassen zwischen 120 und 150 Prozent. Der Fokus rückt weg von der klassischen 40-Stunden-Woche und erlaubt eine flexiblere Aufteilung der To-dos.
„Wir arbeiten mit Unternehmen verschiedenster Größe zusammen“, meint Ellen Härtel, die bei Tandemploy fürs Onlinemarketing zuständig ist. Das Modell lasse sich bereits ab zwei Mitarbeitern anwenden – und komme bei dem Startup auch selbst zum Einsatz. So würden sich die Gründerinnen Anna Kaiser und Jana Tepe die Geschäftsführung teilen; dasselbe gelte für ihren eigenen Job, erzählt Härtel: „Ich arbeite nur fast Vollzeit, eigentlich sind es 32 Stunden“; den Rest übernimmt ihr Partner. „Ich bin nicht mit dem Gedanken in die Jobsuche gegangen, unbedingt Teilzeit arbeiten zu wollen, sondern war einfach nur offen für das Projekt.“
Geteiltes Leid
Jobsharing bringt aber neben vielen Vorteilen auch mehr Komplexität in eine Firma. „Gerade in der Anfangsphase muss man sich da einarbeiten und es benötigt sehr gute Absprachen. Außerdem muss man so etwas wie Konkurrenzdenken unter dem Tisch lassen.“ Die Erfahrung zeige aber, dass die Umstellung meist relativ schnell gehe. Wer glaubt, dass er bei diesem Konzept seine Verantwortung komplett abgibt, irrt. Vielmehr geht es darum, diese gemeinsam mit dem Partner zu übernehmen. Laut Härtel verbucht das deutsche Startup eine große Nachfrage von Unternehmen aus Österreich, insbesondere von jungen Menschen. Seitens der Arbeitgeber würden sich zunehmend auch größere Firmen für das Jobsharing-Modell interessieren. Tandemploy sei in Gesprächen mit drei großen Unternehmen, es gehe jeweils um Jobsharing für Management-Positionen. Im Herbst 2013 gegründet, finden sich rund 5.000 registrierte Jobsharer und über 50 Unternehmen auf der Plattform.
Nachlese. Wo steht die österreichische Wirtschaft bei künstlicher Intelligenz zwei Jahre nach Erscheinen von ChatGPT? Dies diskutieren Doris Lippert von Microsoft und Thomas Steirer von Nagarro in der ersten Folge der neuen brutkasten-Serie "No Hype KI".
Nachlese. Wo steht die österreichische Wirtschaft bei künstlicher Intelligenz zwei Jahre nach Erscheinen von ChatGPT? Dies diskutieren Doris Lippert von Microsoft und Thomas Steirer von Nagarro in der ersten Folge der neuen brutkasten-Serie "No Hype KI".
Mit der neuen multimedialen Serie “No Hype KI” wollen wir eine Bestandsaufnahme zu künstlicher Intelligenz in der österreichischen Wirtschaft liefern. In der ersten Folge diskutieren Doris Lippert, Director Global Partner Solutions und Mitglied der Geschäftsleitung bei Microsoft Österreich, und Thomas Steirer, Chief Technology Officer bei Nagarro, über den Status Quo zwei Jahre nach Erscheinen von ChatGPT.
„Das war ein richtiger Hype. Nach wenigen Tagen hatte ChatGPT über eine Million Nutzer”, erinnert sich Lippert an den Start des OpenAI-Chatbots Ende 2022. Seither habe sich aber viel geändert: “Heute ist das gar kein Hype mehr, sondern Realität“, sagt Lippert. Die Technologie habe sich längst in den Alltag integriert, kaum jemand spreche noch davon, dass er sein Smartphone über eine „KI-Anwendung“ entsperre oder sein Auto mithilfe von KI einparke: “Wenn es im Alltag angekommen ist, sagt keiner mehr KI-Lösung dazu”.
Auch Thomas Steirer erinnert sich an den Moment, als ChatGPT erschien: „Für mich war das ein richtiger Flashback. Ich habe vor vielen Jahren KI studiert und dann lange darauf gewartet, dass wirklich alltagstaugliche Lösungen kommen. Mit ChatGPT war dann klar: Jetzt sind wir wirklich da.“ Er sieht in dieser Entwicklung einen entscheidenden Schritt, der KI aus der reinen Forschungsecke in den aktiven, spürbaren Endnutzer-Bereich gebracht habe.
Von erster Begeisterung zu realistischen Erwartungen
Anfangs herrschte in Unternehmen noch ein gewisser Aktionismus: „Den Satz ‘Wir müssen irgendwas mit KI machen’ habe ich sehr, sehr oft gehört“, meint Steirer. Inzwischen habe sich die Erwartungshaltung realistischer entwickelt. Unternehmen gingen nun strategischer vor, untersuchten konkrete Use Cases und setzten auf institutionalisierte Strukturen – etwa durch sogenannte “Centers of Excellence” – um KI langfristig zu integrieren. „Wir sehen, dass jetzt fast jedes Unternehmen in Österreich KI-Initiativen hat“, sagt Lippert. „Diese Anlaufkurve hat eine Zeit lang gedauert, aber jetzt sehen wir viele reale Use-Cases und wir brauchen uns als Land nicht verstecken.“
Spar, Strabag, Uniqa: Use-Cases aus der österreichischen Wirtschaft
Lippert nennt etwa den Lebensmittelhändler Spar, der mithilfe von KI sein Obst- und Gemüsesortiment auf Basis von Kaufverhalten, Wetterdaten und Rabatten punktgenau steuert. Weniger Verschwendung, bessere Lieferkette: “Lieferkettenoptimierung ist ein Purpose-Driven-Use-Case, der international sehr viel Aufmerksamkeit bekommt und der sich übrigens über alle Branchen repliziert”, erläutert die Microsoft-Expertin.
Auch die Baubranche hat Anwendungsfälle vorzuweisen: Bei Strabag wird mittels KI die Risikobewertung von Baustellen verbessert, indem historische Daten zum Bauträger, zu Lieferanten und zum Bauteam analysiert werden.
Im Versicherungsbereich hat die UNIQA mithilfe eines KI-basierten „Tarif-Bots“ den Zeitaufwand für Tarifauskünfte um 50 Prozent reduziert, was die Mitarbeiter:innen von repetitiven Tätigkeiten entlastet und ihnen mehr Spielraum für sinnstiftende Tätigkeiten lässt.
Nicht immer geht es aber um Effizienzsteigerung. Ein KI-Projekt einer anderen Art wurde kürzlich bei der jüngsten Microsoft-Konferenz Ignite präsentiert: Der Hera Space Companion (brutkasten berichtete). Gemeinsam mit der ESA, Terra Mater und dem österreichischen Startup Impact.ai wurde ein digitaler Space Companion entwickelt, mit dem sich Nutzer in Echtzeit über Weltraummissionen austauschen können. „Das macht Wissenschaft zum ersten Mal wirklich greifbar“, sagt Lippert. „Meine Kinder haben am Wochenende die Planeten im Gespräch mit dem Space Companion gelernt.“
Herausforderungen: Infrastruktur, Daten und Sicherheit
Auch wenn die genannten Use Cases Erfolgsbeispiele zeigen, sind Unternehmen, die KI einsetzen wollen, klarerweise auch mit Herausforderungen konfrontiert. Diese unterscheiden sich je nachdem, wie weit die „KI-Maturität“ der Unternehmen fortgeschritten sei, erläutert Lippert. Für jene, die schon Use-.Cases erprobt haben, gehe es nun um den großflächigen Rollout. Dabei offenbaren sich klassische Herausforderungen: „Integration in Legacy-Systeme, Datenstrategie, Datenarchitektur, Sicherheit – all das darf man nicht unterschätzen“, sagt Lippert.
“Eine große Herausforderung für Unternehmen ist auch die Frage: Wer sind wir überhaupt?”, ergänzt Steirer. Unternehmen müssten sich fragen, ob sie eine KI-Firma seien, ein Software-Entwicklungsunternehmen oder ein reines Fachunternehmen. Daran anschließend ergeben sich dann Folgefragen: „Muss ich selbst KI-Modelle trainieren oder kann ich auf bestehende Plattformen aufsetzen? Was ist meine langfristige Strategie?“ Er sieht in dieser Phase den Übergang von kleinen Experimenten über breite Implementierung bis hin zur Institutionalisierung von KI im Unternehmen.
Langfristiges Potenzial heben
Langfristig stehen die Zeichen stehen auf Wachstum, sind sich Lippert und Steirer einig. „Wir überschätzen oft den kurzfristigen Impact und unterschätzen den langfristigen“, sagt die Microsoft-Expertin. Sie verweist auf eine im Juni präsentierte Studie, wonach KI-gestützte Ökosysteme das Bruttoinlandsprodukt Österreichs deutlich steigern könnten – und zwar um etwa 18 Prozent (brutkasten berichtete). „Das wäre wie ein zehntes Bundesland, nach Wien wäre es dann das wirtschaftsstärkste“, so Lippert. „Wir müssen uns klar machen, dass KI eine Allzwecktechnologie wie Elektrizität oder das Internet ist.“
Auch Steirer ist überzeugt, dass sich für heimische Unternehmen massive Chancen eröffnen: “Ich glaube auch, dass wir einfach massiv unterschätzen, was das für einen langfristigen Impact haben wird”. Der Appell des Nagarro-Experten: „Es geht jetzt wirklich darum, nicht mehr zuzuwarten, sondern sich mit KI auseinanderzusetzen, umzusetzen und Wert zu stiften.“
Folge nachsehen: No Hype KI – wo stehen wir nach zwei Jahren ChatGPT?
Die Serie wird von brutkasten in redaktioneller Unabhängigkeit mit finanzieller Unterstützung unserer Partner:innen produziert.
Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.