8 Länder beteiligt – RBI bringt größtes FinTech-Programm in CEE-Region
In der zweiten Auflage des RBI FinTech-Accelerators Elevator Lab werden, neben dem Gruppenweiten Wettbewerb, die Raiffeisen-Netzwerk-Banken in Bulgarien, Albanien, Belarus, dem Kosovo, Rumänien, Russland, Serbien und der Slowakei mit eigenen Elevator Lab Challenges gezielt Startups ansprechen.
In Bulgarien hat die Bewerbungsphase bereits am 2. April begonnen. Sieben weitere Raiffeisen-Netzwerkbanken werden nun mit eigenen “Elevator Lab Challenges” nachziehen. Konkret sind es, neben Bulgarien, Albanien, Belarus, der Kosovo, Rumänien, Russland,
Serbien und die Slowakei, wo es lokale Challenges für FinTech-Startups geben wird. Diese finden parallel zur gruppenweiten internationalen Ausschreibung von 1. Mai bis 24. Juni statt, die – analog zum Durchgang im vergangenen Jahr – FinTechs aus aller Welt anziehen soll.
Wild Card für Sieger aus den regionalen Elevator Lab Challenges
Die Gewinner der acht lokalen Elevator Lab Challenges erhalten eine Wild Card für das Halbfinale des gruppenweiten Bewerbs und damit die Chance zum Finale der Top 15 im September 2018 nach Wien eingeladen zu werden. Es wird damit das größte FinTech-Accelerator-Programm im CEE-Raum. “Die RBI ist seit bald 30 Jahren erfolgreich in CEE vertreten. Wir wissen daher, wie viel wirtschaftliches und auch kreatives Potenzial diese diverse und dynamische Region zu bieten hat. Mit diesen lokalen Challenges möchten wir gezielt die Startup-Ökosysteme in der Region unterstützen und jungen Unternehmen die Möglichkeit geben, sich auf einer internationalen Bühne mit Fintechs aus der ganzen Welt zu messen”, sagt Johann Strobl, Vorstandsvorsitzender der RBI. Nach dem Fall des “Eisernen Vorhangs” 1989, war die Raiffeisen-Gruppe, neben anderen österreichischen Großbanken, stark in den CEE-Raum expandiert.
Video-Interview vom Demo Day des ersten Durchgangs:
Startups aus Durchgang 1 bereits in Test- und Umsetzungsphase
Man wolle noch besser auf die Bedürfnisse der rund 16,5 Millionen Kunden der RBI eingehen und durch den Einsatz neuer Technologien und innovativer Produkte neue Ertragsquellen erschließen, heißt es von der RBI. Aus dem ersten Durchgang des Elevator Labs im vergangenen Jahr könne man bereits sehr gute Ergebnisse vorweisen. So konnten mit den fünf teilnehmenden Startups innerhalb weniger Monate Pilotprojekte entwickelt werden, die sich mittlerweile in erweiterten Test- bzw. Umsetzungsphasen befinden. Man betrachte die Startups dabei als Partner auf Augenhöhe und verzichtet bewusst in dieser Phase auf eine Eigenkapitalbeteiligung.
Sechs konkrete Bereiche
Auch für diesen Durchgang des Elevator Labs wurden konkrete Bereiche definiert, in denen Lösungen gesucht werden: Advanced Analytics, Corporate Banking, Investing & Trading Tech, New Branch Experience, Open Banking und RegTech. Für österreichische FinTech-Startups steht, wie gehabt, der gruppenweite Wettbewerb, dessen Bewerbungsphase am 1. Mai startet, frei.
Nachlese. Wo steht die österreichische Wirtschaft bei künstlicher Intelligenz zwei Jahre nach Erscheinen von ChatGPT? Dies diskutieren Doris Lippert von Microsoft und Thomas Steirer von Nagarro in der ersten Folge der neuen brutkasten-Serie "No Hype KI".
Nachlese. Wo steht die österreichische Wirtschaft bei künstlicher Intelligenz zwei Jahre nach Erscheinen von ChatGPT? Dies diskutieren Doris Lippert von Microsoft und Thomas Steirer von Nagarro in der ersten Folge der neuen brutkasten-Serie "No Hype KI".
Mit der neuen multimedialen Serie “No Hype KI” wollen wir eine Bestandsaufnahme zu künstlicher Intelligenz in der österreichischen Wirtschaft liefern. In der ersten Folge diskutieren Doris Lippert, Director Global Partner Solutions und Mitglied der Geschäftsleitung bei Microsoft Österreich, und Thomas Steirer, Chief Technology Officer bei Nagarro, über den Status Quo zwei Jahre nach Erscheinen von ChatGPT.
„Das war ein richtiger Hype. Nach wenigen Tagen hatte ChatGPT über eine Million Nutzer”, erinnert sich Lippert an den Start des OpenAI-Chatbots Ende 2022. Seither habe sich aber viel geändert: “Heute ist das gar kein Hype mehr, sondern Realität“, sagt Lippert. Die Technologie habe sich längst in den Alltag integriert, kaum jemand spreche noch davon, dass er sein Smartphone über eine „KI-Anwendung“ entsperre oder sein Auto mithilfe von KI einparke: “Wenn es im Alltag angekommen ist, sagt keiner mehr KI-Lösung dazu”.
Auch Thomas Steirer erinnert sich an den Moment, als ChatGPT erschien: „Für mich war das ein richtiger Flashback. Ich habe vor vielen Jahren KI studiert und dann lange darauf gewartet, dass wirklich alltagstaugliche Lösungen kommen. Mit ChatGPT war dann klar: Jetzt sind wir wirklich da.“ Er sieht in dieser Entwicklung einen entscheidenden Schritt, der KI aus der reinen Forschungsecke in den aktiven, spürbaren Endnutzer-Bereich gebracht habe.
Von erster Begeisterung zu realistischen Erwartungen
Anfangs herrschte in Unternehmen noch ein gewisser Aktionismus: „Den Satz ‘Wir müssen irgendwas mit KI machen’ habe ich sehr, sehr oft gehört“, meint Steirer. Inzwischen habe sich die Erwartungshaltung realistischer entwickelt. Unternehmen gingen nun strategischer vor, untersuchten konkrete Use Cases und setzten auf institutionalisierte Strukturen – etwa durch sogenannte “Centers of Excellence” – um KI langfristig zu integrieren. „Wir sehen, dass jetzt fast jedes Unternehmen in Österreich KI-Initiativen hat“, sagt Lippert. „Diese Anlaufkurve hat eine Zeit lang gedauert, aber jetzt sehen wir viele reale Use-Cases und wir brauchen uns als Land nicht verstecken.“
Spar, Strabag, Uniqa: Use-Cases aus der österreichischen Wirtschaft
Lippert nennt etwa den Lebensmittelhändler Spar, der mithilfe von KI sein Obst- und Gemüsesortiment auf Basis von Kaufverhalten, Wetterdaten und Rabatten punktgenau steuert. Weniger Verschwendung, bessere Lieferkette: “Lieferkettenoptimierung ist ein Purpose-Driven-Use-Case, der international sehr viel Aufmerksamkeit bekommt und der sich übrigens über alle Branchen repliziert”, erläutert die Microsoft-Expertin.
Auch die Baubranche hat Anwendungsfälle vorzuweisen: Bei Strabag wird mittels KI die Risikobewertung von Baustellen verbessert, indem historische Daten zum Bauträger, zu Lieferanten und zum Bauteam analysiert werden.
Im Versicherungsbereich hat die UNIQA mithilfe eines KI-basierten „Tarif-Bots“ den Zeitaufwand für Tarifauskünfte um 50 Prozent reduziert, was die Mitarbeiter:innen von repetitiven Tätigkeiten entlastet und ihnen mehr Spielraum für sinnstiftende Tätigkeiten lässt.
Nicht immer geht es aber um Effizienzsteigerung. Ein KI-Projekt einer anderen Art wurde kürzlich bei der jüngsten Microsoft-Konferenz Ignite präsentiert: Der Hera Space Companion (brutkasten berichtete). Gemeinsam mit der ESA, Terra Mater und dem österreichischen Startup Impact.ai wurde ein digitaler Space Companion entwickelt, mit dem sich Nutzer in Echtzeit über Weltraummissionen austauschen können. „Das macht Wissenschaft zum ersten Mal wirklich greifbar“, sagt Lippert. „Meine Kinder haben am Wochenende die Planeten im Gespräch mit dem Space Companion gelernt.“
Herausforderungen: Infrastruktur, Daten und Sicherheit
Auch wenn die genannten Use Cases Erfolgsbeispiele zeigen, sind Unternehmen, die KI einsetzen wollen, klarerweise auch mit Herausforderungen konfrontiert. Diese unterscheiden sich je nachdem, wie weit die „KI-Maturität“ der Unternehmen fortgeschritten sei, erläutert Lippert. Für jene, die schon Use-.Cases erprobt haben, gehe es nun um den großflächigen Rollout. Dabei offenbaren sich klassische Herausforderungen: „Integration in Legacy-Systeme, Datenstrategie, Datenarchitektur, Sicherheit – all das darf man nicht unterschätzen“, sagt Lippert.
“Eine große Herausforderung für Unternehmen ist auch die Frage: Wer sind wir überhaupt?”, ergänzt Steirer. Unternehmen müssten sich fragen, ob sie eine KI-Firma seien, ein Software-Entwicklungsunternehmen oder ein reines Fachunternehmen. Daran anschließend ergeben sich dann Folgefragen: „Muss ich selbst KI-Modelle trainieren oder kann ich auf bestehende Plattformen aufsetzen? Was ist meine langfristige Strategie?“ Er sieht in dieser Phase den Übergang von kleinen Experimenten über breite Implementierung bis hin zur Institutionalisierung von KI im Unternehmen.
Langfristiges Potenzial heben
Langfristig stehen die Zeichen stehen auf Wachstum, sind sich Lippert und Steirer einig. „Wir überschätzen oft den kurzfristigen Impact und unterschätzen den langfristigen“, sagt die Microsoft-Expertin. Sie verweist auf eine im Juni präsentierte Studie, wonach KI-gestützte Ökosysteme das Bruttoinlandsprodukt Österreichs deutlich steigern könnten – und zwar um etwa 18 Prozent (brutkasten berichtete). „Das wäre wie ein zehntes Bundesland, nach Wien wäre es dann das wirtschaftsstärkste“, so Lippert. „Wir müssen uns klar machen, dass KI eine Allzwecktechnologie wie Elektrizität oder das Internet ist.“
Auch Steirer ist überzeugt, dass sich für heimische Unternehmen massive Chancen eröffnen: “Ich glaube auch, dass wir einfach massiv unterschätzen, was das für einen langfristigen Impact haben wird”. Der Appell des Nagarro-Experten: „Es geht jetzt wirklich darum, nicht mehr zuzuwarten, sondern sich mit KI auseinanderzusetzen, umzusetzen und Wert zu stiften.“
Folge nachsehen: No Hype KI – wo stehen wir nach zwei Jahren ChatGPT?
Die Serie wird von brutkasten in redaktioneller Unabhängigkeit mit finanzieller Unterstützung unserer Partner:innen produziert.
Aktuelle Nachrichten zu Startups, den neuesten Innovationen und politischen Entscheidungen zur Digitalisierung direkt in dein Postfach. Wähle aus unserer breiten Palette an Newslettern den passenden für dich.